| A. | $\frac{2}{3}$sin2x+cosx | B. | -$\frac{2}{3}$sin2x+cosx | C. | $\frac{2}{3}$sin2x-cosx | D. | -$\frac{2}{3}$sin2x-cosx |
分析 由题意:f(x)+f(-x)=0恒成立,可得f(x)是奇函数.当x>0时,f(x)=$\frac{2}{3}$sin2x+cosx,当x<0时,那么-x>0,可得f(x)的解析式.
解答 解:由题意:f(x)+f(-x)=0恒成立,可得f(x)是奇函数.即-f(x)=f(-x);
当x>0时,f(x)=$\frac{2}{3}$sin2x+cosx,
当x<0时,则-x>0,那么,f(-x)=$\frac{2}{3}$sin(-2x)+cos(-x)=-$\frac{2}{3}$sin2x+cosx,
∵-f(x)=f(-x);
∴f(x)=$\frac{2}{3}$sin2x-cosx,
故选C.
点评 本题考查了解析式的求法,利用了函数的奇函数的性质求解!属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 252 | B. | 263 | C. | 258 | D. | 247 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,1),[3,5] | B. | [-2,1)∪[3,5] | C. | [-2,1] | D. | [3,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x2=1,则x=1或x=-1”的否命题为:“若x2≠1,则x≠1或x≠-1” | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1>0” | |
| D. | 命题“若x=y,则sinx=siny”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 37 | B. | 38 | C. | 39 | D. | 40 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com