精英家教网 > 高中数学 > 题目详情
5.若直线ax+y-a+1=0(a∈R)与圆x2+y2=4交于A、B两点(其中O为坐标原点),则$\overrightarrow{AO}•\overrightarrow{AB}$的最小值为(  )
A.1B.2C.3D.4

分析 由题意得直线恒过定点C(1,-1),圆x2+y2=4圆心为(0,0)半径为2,$\overrightarrow{AO}•\overrightarrow{AB}$=4-2×2×cos<$\overrightarrow{OA},\overrightarrow{OB}$>,可得当AB⊥OC时,式子取最小值,数形结合联立方程组解点的坐标可得$\overrightarrow{AO}•\overrightarrow{AB}$的最小值.

解答 解:直线ax+y-a+1=0可化为y+1=-a(x-1),
恒过定点C(1,-1),圆x2+y2=4圆心为(0,0)半径为2,
∴$\overrightarrow{AO}•\overrightarrow{AB}$=$\overrightarrow{OA}•\overrightarrow{BA}$=$\overrightarrow{OA}$•($\overrightarrow{OA}$-$\overrightarrow{OB}$)=${\overrightarrow{OA}}^{2}-\overrightarrow{OA}•\overrightarrow{OB}$
=4-2×2×cos<$\overrightarrow{OA},\overrightarrow{OB}$>,
当AB⊥OC时,<$\overrightarrow{OA}$,$\overrightarrow{OB}$>最小,cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>取最大值,
此时$\overrightarrow{AO}$•$\overrightarrow{AB}$=4-4cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>取最小值,
此时OC的斜率为-1,由垂直关系可得-a=1,解得a=-1,
故此时直线方程为y+1=x-1,即y=x-2,
联立$\left\{\begin{array}{l}{y=x-2}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,
∴<$\overrightarrow{OA}$,$\overrightarrow{OB}$>取最小值$\frac{π}{2}$,cos<$\overrightarrow{OA},\overrightarrow{OB}$>取最大值0,
此时$\overrightarrow{AO}$•$\overrightarrow{AB}$=4-4cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>取最小值4.
故选:D.

点评 本题考查直线和圆相交的性质,涉及向量的数量积的最值和三角函数,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列各组不等式中同解的是(  )
A.x>6与x(x-3)2>6(x-3)2B.$\sqrt{2x+1}$(x-2)≥0与x≥2
C.x2-3x+3+$\frac{1}{x-3}$>$\frac{x-2}{x-3}$与x2-3x+2>0D.$\frac{x-2}{(x+1)^{2}(x-1)}$>0与x2-3x+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.每逢节假日,在微信好友群发红包逐渐成为一种时尚,还能增进彼此的感情.2015年中秋节期间,小鲁在自己的微信校友群,向在线的甲、乙、丙、丁四位校友随机发放红包,发放的规则为:每次发放1个,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少得到1个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发放了3个红包,其中2个红包中各有5元,1个红包有10元,记这段时间内乙所得红包的总钱数为X元,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过圆x2+y2=1上一点作该圆的切线与x轴、y轴的正半轴交于A,B两点,则|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|有(  )
A.最大值$\sqrt{2}$B.最小值$\sqrt{2}$C.最大值2D.最小值2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆M:x2+y2+2x+2$\sqrt{3}$y-5=0,则圆心坐标为(-1,-$\sqrt{3}$);此圆中过原点的弦最短时,该弦所在的直线方程为x+$\sqrt{3}$y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过点A(0,a)作直线与圆E:(x-2)2+y2=1交于B,C两点,在线段BC上取满足BP:PC=AB:AC的点P.
(Ⅰ)求P点的轨迹方程;
(Ⅱ)设直线2x-ay-3=0与圆E交于M、N两点,求△EMN(E为圆心)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)设等差数列{an}的前n项和为Sn,若a6=S3=12,求{an}的通项an
(2)等比数列{an}中,a5-a1=15,a4-a2=6,求公比q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线3x+4y-m=0与圆x2+y2+2x-4y+4=0始终有公共点,则实数m的取值范围是[0,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC的内角A、B、C的对边分别为a、b、c,若b=4,A=$\frac{7π}{12}$,c=4$\sqrt{2}$,则△ABC的面积为(  )
A.4$\sqrt{3}$+4B.2$\sqrt{3}$+2C.2$\sqrt{3}$-2D.4$\sqrt{3}$-4

查看答案和解析>>

同步练习册答案