精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 底面,底面是直角梯形,

1)在上确定一点,使得平面,并求的值;

2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

【答案】12

【解析】试题分析:(1)连接,由线面平行性质定理可得作即可,两次运用相似三角形可得结果;(2)以为坐标原点,建立如图所示的空间直角坐标系,求出平面与平面的法向量,可得锐二面角.

试题解析:(1)连接

中,过

平面平面

平面

2)以为坐标原点,建立如图所示的空间直角坐标系,则

所以

设平面的一个法向量为,则

,即

,则

的中点为,连接

平面,则平面

是平面的一个法向量,

平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是等比数列, 为数列的前项和,且

(1)求数列的通项公式.

(2)设为递增数列.若求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是______,样本是______,样本量是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,的中点

1求证:平面

2在线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于简单随机抽样,下列说法正确的是(

①它要求被抽取样本的总体的个体数有限;

②它是从总体中逐个进行抽取的,在实践中操作起来也比较方便;

③它是一种不放回抽样;

④它是一种等可能抽样,在整个抽样过程中,每个个体被抽到的机会相等,从而保证了这种抽样方法的公平性.

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前项和,且满足,等差数列的前项和为,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列的通项公式为问是否存在互不相等的正整数 使得 成等差数列,且 成等比数列?若存在,求出 ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有三所高校,其学生会学习部有干事人数分别为,现采用分层抽样的方法从这些干事中抽取名进行大学生学习部活动现状调查

1)求应从这三所高校中分别抽取的干事人数;

2)若从抽取的名干事中随机选两名干事,求选出的名干事来自同一所高校的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足为坐标原点),记点的轨迹为.

(I)求曲线的方程;

(II)若直线是曲线的一条切线,当点到直线的距离最短时,求直线的方程.

查看答案和解析>>

同步练习册答案