精英家教网 > 高中数学 > 题目详情
1.在数列{an}中,如果an+1=$\frac{{a}_{n}+{a}_{n+2}}{2}$对任意的n∈N*都成立,求证数列{an}是等差数列.

分析 根据等差数列的定义进行判断和证明即可.

解答 证明:∵an+1=$\frac{{a}_{n}+{a}_{n+2}}{2}$,
∴2an+1=an+an+2
即an+1-an=an+2-an+1
即数列{an}是等差数列.

点评 本题主要考查等差数列的判断,根据等差数列的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.不等式C${\;}_{10}^{n}$<C${\;}_{10}^{n+2}$的解集是{n|0≤n<4,n∈N}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个底面直径等于高的圆柱的轴截面面积是S,则它的一个底面面积是(  )
A.$\frac{π}{2}$SB.$\frac{π}{4}$SC.SD.πS

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=$\frac{a}{3}$x3+$\frac{b}{2}$x2-a2x(a>0)有两个极值点x1,x2,且|x1|+|x2|=2.
(1)求证:0<a≤1.
(2)求b的最大值;
(3)设g(x)=f′(x)-2a(x-x1),x1<x<2,x1<0,求证:|g(x)|≤4a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,E是点A在平面PBC内的射影,求证:PA⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x2+2y2=1,求2x+5y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D.则四面体ABCD的四个顶点所在球的半径为(  )
A.$\frac{5}{2}$B.$\frac{25}{4}$C.$\frac{2}{5}$D.$\frac{4}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从圆C:(x-2)2+(y-3)2=1外-点P(a,b)向圆引切线PT,T为切点,且PT=PO(O为原点).
(1)求a,b满足的关系;
(2)求PT的最小值及此时P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a1,a2,…an是等差数列,M={ai,aj,ak|1≤i<j<k≤13},问:0,$\frac{7}{2}$,$\frac{16}{3}$是否可以同时在M中?

查看答案和解析>>

同步练习册答案