分析 由约束条件作出可行域,令z=3x+4y-2,化为直线方程的斜截式,求出z的范围,则答案可求.
解答 解:由约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x+y≤1}\end{array}\right.$作出可行域,![]()
联立$\left\{\begin{array}{l}{2x-y+1=0}\\{x-2y-1=0}\end{array}\right.$,解得C(-1,-1),又B(0,1)
化目标函数z=3x+4y-2,得$y=-\frac{3}{4}x+\frac{z}{4}+\frac{1}{2}$,
由图可知,当直线$y=-\frac{3}{4}x+\frac{z}{4}+\frac{1}{2}$过B时,z有最大值为2;
当直线$y=-\frac{3}{4}x+\frac{z}{4}+\frac{1}{2}$过C时,z有最小值为-9.
∴|3x+4y-2|的取值范围是[0,9].
故答案为:[0,9].
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com