分析 (1)当n=1,a1=4,当n≥2,2a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=2n+1,a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n-1}}{n-1}$=2n,两式相减得到${a}_{n}=n•{2}^{n}$(n≥2),写出通项公式an,
(2)是由等比数列和等差组成的数列,采用乘以公比错位相减法,求得前n项和.
解答 当n=1时,由题意可知a1=4,
当n≥2,2a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=2n+1,
a1+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n-1}}{n-1}$=2n,
两式相减:$\frac{{a}_{n}}{n}$=2n+1-2n,
∴${a}_{n}=n•{2}^{n}$(n≥2),
故{an}的通项公式为{an}=$\left\{\begin{array}{l}{4}&{n=1}\\{n•{2}^{n}}&{n≥2,n∈{N}^{*}}\end{array}\right.$,
(2){an}的前n项和为Sn,
${S}_{n}=1×{2}^{2}+2×{2}^{2}+3×{2}^{3}+…+n×{2}^{n}$,
$2{S}_{n}=1×{2}^{3}+2×{2}^{3}+3×{2}^{4}+…+n×{2}^{n+1}$,
两式相减得:Sn═n×2n+1-(22+23+…+2n),
=n×2n+1-4(2n-1-1),
=(n-1)•2n+1+4,
{an}的前n项和Sn═(n-1)•2n+1+4.
点评 本题考查求数列的通项公式,采用乘以公比错位相减法求前n项公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2015}{2}$ | B. | 1006 | C. | 1007 | D. | 1008 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<4或x>6} | B. | {x|x<-6或x>-4} | C. | {x|4<x<6} | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | -$\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com