| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
分析 根据正弦函数的性质求出f(x)的4个最小正零点即可得出答案.
解答 解:令f(x)=0可得sin(πx)=$\frac{1}{2}$,
∴πx=$\frac{π}{6}$+2kπ或πx=$\frac{5π}{6}$+2kπ,k∈Z.
∴x=$\frac{1}{6}$+2k或x=$\frac{5}{6}$+2k,k∈Z.
∴f(x)的最小的4个正零点依次为$\frac{1}{6}$,$\frac{5}{6}$,$\frac{13}{6}$,$\frac{17}{6}$.
∴x1+x2+x3+x4的最小值为$\frac{1}{6}$+$\frac{5}{6}$+$\frac{13}{6}$+$\frac{17}{6}$=6.
故选B.
点评 本题考查了正弦函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 项目 | 半程马拉松 | 10公里健身跑 | 迷你马拉松 |
| 人数 | 2 | 3 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{11}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com