精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-1,0,1),
b
=(1,2,3),k∈R,若k
a
-
b
b
垂直,则k=
 
考点:数量积判断两个平面向量的垂直关系
专题:空间向量及应用
分析:利用向量垂直的性质求解.
解答: 解:∵向量
a
=(-1,0,1),
b
=(1,2,3),k∈R,
k
a
-
b
b
垂直,
∴(k
a
-
b
)•
b
=k
a
b
-
b
2
=k(-1+0+3)-(1+4+9)=0,
解得b=7.
故答案为:7.
点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(
1
2
x,x∈[-1,3],则函数的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=ax+b-1(a>0且a≠1)的图象经过一、二、三象限,一定有(  )
A、a>1且b>1
B、a>1且0<b<1
C、a>1且b<0
D、0<a<1且b<0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,有下列结论:
①若A>B,则sinA>sinB;
②若c2<a2+b2,则△ABC为锐角三角形;
③若a,b,c成等差,则sinA+sinC=2sin(A+C);
④若a,b,c成等比,则cosB的最小值为
1
2

其中结论正确的是
 
.(填上全部正确的结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边分别为a,b,c,若acosC=b,则△ABC的形状是(  )
A、钝角三角形
B、锐角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若a2与a10的等差中项是-4,且a1•a6=14.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=
2Sn-2an
n
(n∈N+),求f(n)最小值及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

公司现有青年人160人,中年人30人,老年人10人,要从其中抽取20个人进行身体健康检查,则宜采用的抽样方法是(  )
A、抽签法B、随机数法
C、系统抽样法D、分层抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:

设-2≤x≤2,则函数y=4x-2×2x+5的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,若(a2+c2-b2)tanB=
3
ac,则角B的值为(  )
A、
π
6
B、
π
3
C、
π
6
6
D、
π
3
3

查看答案和解析>>

同步练习册答案