精英家教网 > 高中数学 > 题目详情
在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线
则曲线C的方程为(    )
A.25x2+36y2=0B.9x2+100y2="0"
C.10x+24y=0D.
A
代入可得所以原方程为,
所以曲线C的方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知双曲线的左右焦点分别为,P为C的右支上一点,且=,△的面积等于(   )
A.24B.36C.48D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,它的一个顶点为,离心率
(1)求椭圆的方程;
(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面
积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)以下是有关椭圆的两个问题:
问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值;
问题2:已知椭圆,定点A (2, 1),F是右焦点,
P是椭圆上动点,有最小值;

(Ⅰ)求问题1中的最小值,并求此时P点坐标;
(Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 若椭圆过点,离心率为,⊙O的圆心在原点,直径为椭圆的短轴,⊙M的方程为,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1) 求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2),若的最小值为1,则椭圆的离心率为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
在平面直角坐标系中,点为动点,已知点,直线的斜率之积为.
(I)求动点轨迹的方程;
(II)过点的直线交曲线两点,设点关于轴的对称点为(不重合),求证:直线过定点.

查看答案和解析>>

同步练习册答案