精英家教网 > 高中数学 > 题目详情
已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
(1);(2)x-y-1=0或x+y-1=0.

试题分析:(1)设Q(x0,4),代入由中得x0=,在根据抛物线的性质可得,解出p即可
(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2), M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.
试题解析:(1)设Q(x0,4),代入由中得x0=
所以,由题设得,解得p=-2(舍去)或p=2.
所以C的方程为.
(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得

设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,
故AB的中点为D(2m2+1,2m),
有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得
.
设M(x3,y3),N(x4,y4),则.
故MN的中点为E().
由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得
m2-1=0,解得m=1或m=-1,
所以所求直线l的方程为x-y-1=0或x+y-1=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.(12分)
(1)求椭圆的方程;
(2)直线与椭圆交于两点,若线段的垂直平分线经过点,求
为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.

(1)求的值;
(2)过点的直线分别交于(均异于点),若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

【文科】抛物线y2=-8x的焦点坐标是(  )
A.(4,0)B.(-4,0)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若圆(x-3)2+y2=16与抛物线y2=2px(p>0)的准线相切,则p值为(  )
A.1B.2C.
1
2
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线)的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是关于的方程的两个不等实根,则过两点的直线与双曲线的公共点的个数为(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点P,线段的垂直平分线与的交点的轨迹为曲线,若上不同的点,且,则的取值范围是(  )
A.B.
C.D.以上都不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于(  )
A.B.C.-D.-

查看答案和解析>>

同步练习册答案