精英家教网 > 高中数学 > 题目详情
18.已知cosα=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),则tan($\frac{π}{4}$-α)=(  )
A.-$\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

分析 利用同角三角函数的基本关系求得tanα的值,再利用两角差的正切公式求得tan($\frac{π}{4}$-α)的值.

解答 解:∵cosα=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
则tan($\frac{π}{4}$-α)=$\frac{1-tanα}{1+tanα}$=-7,
故选:B.

点评 本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.曲线f(x)=ax3+2x-1在点(1,f(1))处的切线过点(3,4),则a=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC、BD,设内层椭圆方程$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),若直线AC与BD的斜率之积为-$\frac{1}{4}$,则椭圆的离心率为$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面四边形ABCD是边长为1的正方形,PA=PD,且PA⊥CD.
(1)求证:平面PAD⊥底面ABCD;
(2)设PA=λ,当λ为何值时异面直线PA与BC所成的角为$\frac{π}{3}$?求并此时棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx-bx+a(a,b∈R),g(x)=$\frac{1}{2}$x2+1.
(Ⅰ)讨论f(x)在(1,+∞)上的单调性;
(Ⅱ)设b=1,直线l1是曲线y=f(x)在点P(x1,f(x1))处的切线,直线l2是曲线y=g(x)在点Q(x2,g(x2))(x2≥0)处的切线.若对任意的点Q,总存在点P,使得l1在l2的下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如表:
售出水量x(单位:箱)76656
收益y(单位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求预计收益是多少元?
(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201-500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为$\frac{2}{5}$,获二等奖学金的概率均为$\frac{1}{3}$,不获得奖学金的概率均为$\frac{4}{15}$.
(1)在学生甲获得奖学金条件下,求他获得一等奖学金的概率;
(2)已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X的分布列及数学期望
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)是定义在R上的周期为3的函数,当x∈[-2,1)时,f(x)=$\left\{\begin{array}{l}4{x^2}-2,-2≤x≤0\\ x,0<x<1\end{array}$,则f(f($\frac{21}{4}$))=(  )
A.-$\frac{3}{4}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解下列三角方程:
(1)2sin2x+$\sqrt{3}$cosx+1=0.
(2)3sin2x+8sinxcosx-3cos2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,等边△PAD所在的平面与正方形ABCD所在的平面互相垂直,O为AD的中点,E为DC的中点,且AD=2.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求二面角P-EB-A的余弦值;
(Ⅲ)在线段AB上是否存在点M,使线段PM与△PAD所在平面成30°角.若存在,
求出AM的长,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案