精英家教网 > 高中数学 > 题目详情
8.曲线f(x)=ax3+2x-1在点(1,f(1))处的切线过点(3,4),则a=-$\frac{1}{7}$.

分析 求出函数的导数,利用切线的方程经过的点求解即可.

解答 解:函数f(x)=ax3+2x-1的导数为:f′(x)=3ax2+2,f′(1)=3a+2,而f(1)=a+1,
切线方程为:y-a-1=(3a+2)(x-1),
因为切线方程经过(3,4),
所以4-a-1=(3a+2)(3-1),
解得a=-$\frac{1}{7}$.
故答案为:-$\frac{1}{7}$.

点评 本题考查函数的导数的应用,切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设集合M={x|y=$\sqrt{{{log}_2}x-1}$},N={x||x-1|≤2},则M∩N=[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2作垂直于长轴的直线交椭圆于A、B两点,且|AB|=3.
(1)求椭圆的方程;
(2)过F1点作相互垂直的直线l1,l2,其中l1交椭圆于P1,P2,l2交椭圆于P3,P4,求证$\frac{1}{|P{{\;}_{1}P}_{2}|}$+$\frac{1}{|{P}_{3}{P}_{4}|}$是否为定值?并求当四边形P1P2P3P4面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{a}$=(-$\frac{7\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{b}$=($\sqrt{2}$,$\sqrt{2}$),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是(  )
A.-3B.3C.-$\frac{6}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点P是边长为2的正三角形ABC的重心,则$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值为(  )
A.0B.2C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计. 请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.560.08
60.5~70.50.16
70.5~80.515
80.5~90.5240.32
90.5~100.5
合计751.00
(1)填充频率分布表的空格;
(2)补全频率分布直方图;
(3)根据频率分布直方图求此次“环保知识竞赛”的平均分为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:实数x满足|2x-m|≥1;命题q:实数x满足$\frac{1-3x}{x+2}$>0.
(Ⅰ)若m=1时,p∧q为真,求实数x的取值范围;
(Ⅱ)若?p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题p:方程$\frac{{y}^{2}}{4-t}$+$\frac{{x}^{2}}{t-8}$=1表示焦点在y轴上的双曲线;命题q:实数t使函数f(x)=log2(x2-2tx+2t+3)的定义域是R.
(Ⅰ)若t=2时,求命题p中的双曲线的离心率及渐近线方程;
(Ⅱ)求命题¬p是命题¬q的什么条件(充分不必要,必要不充分,充要,既不充分又不必要中的一种),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cosα=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),则tan($\frac{π}{4}$-α)=(  )
A.-$\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

查看答案和解析>>

同步练习册答案