精英家教网 > 高中数学 > 题目详情
11.设集合M={x|y=$\sqrt{{{log}_2}x-1}$},N={x||x-1|≤2},则M∩N=[2,3].

分析 求出M中x的范围确定出M,求出N中绝对值不等式的解集确定出N,找出两集合的交集即可.

解答 解:由M中y=$\sqrt{lo{g}_{2}x-1}$,得到log2x-1≥0,即log2x≥1=log22,
解得:x≥2,即M=[2,+∞),
由N中不等式变形得:-2≤x-1≤2,
解得:-1≤x≤3,即N=[-1,3],
则M∩N=[2,3],
故答案为:[2,3]

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点P是△ABC所在平面内一点,且满足3$\overrightarrow{PA}$+5$\overrightarrow{PB}$+2$\overrightarrow{PC}$=$\overrightarrow{0}$,已知△ABC的面积为6,则△PAC的面积为(  )
A.$\frac{9}{2}$B.4C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,则所得图象对应的函数解析式是(  )
A.y=-cos4xB.y=-cosxC.y=sin(x+$\frac{π}{4}$)D.y=-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二项式($\frac{\sqrt{5}}{5}$x2+$\frac{1}{x}$)6展开式中的常数项为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=sinxcosx+$\sqrt{3}$cos2x的图象向左平移φ(φ>0)个单位,得到一个偶函数,则φ的最小值为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}满足a1=2,a1+a3+a5=14,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow m$=(cosα,sinα),$\overrightarrow n$=($\sqrt{3}$,-1),α∈(0,π).
(1)若$\overrightarrow m$⊥$\overrightarrow n$,求角α的值;
(2)求|$\overrightarrow m$+$\overrightarrow n$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.
(Ⅰ)求证:AB∥GH;
(Ⅱ)求异面直线DP与BQ所成的角;
(Ⅲ)求直线AQ与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线f(x)=ax3+2x-1在点(1,f(1))处的切线过点(3,4),则a=-$\frac{1}{7}$.

查看答案和解析>>

同步练习册答案