在计算“1×2+2×3+...+n(n+1)”时,某同学学到了如下一种方法:
先改写第k项:k(k+1)=
由此得1×2-.
.
.............
.
相加,得1×2+2×3+...+n(n+1).
类比上述方法,请你计算“1×2×3×4+2×3×4×+....+”,
其结果是_________________.(结果写出关于的一次因式的积的形式)
科目:高中数学 来源: 题型:填空题
请阅读下列材料:若两个正实数a1,a2满足,那么.
证明:构造函数,因为对一切实数x,恒有,所以 ,从而得,所以.
根据上述证明方法,若n个正实数满足时,你能得到的结论为 .(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com