精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1+
a2
2
+…+
an
n
=2n-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2n-1
(n+1)an
,求数列{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由a1+
a2
2
+…+
an
n
=2n-1⇒a1+
a2
2
+…+
an-1
n-1
=2n-1-1(n≥2),两式相减即可求得数列{an}的通项公式;
(Ⅱ)由(Ⅰ)知an=n•2n-1,利用裂项法可求得bn=
2n-1
(n+1)an
=
2n-1
n(n+1)2n-1
=
1
n(n-1)
=
1
n
-
1
n+1
,从而可求得数列{bn}的前n项和Sn
解答: 解:(Ⅰ)∵a1+
a2
2
+…+
an
n
=2n-1,①
∴当n≥2时,a1+
a2
2
+…+
an-1
n-1
=2n-1-1,②
①-②得:
an
n
=2n-1
∴an=n•2n-1
(Ⅱ)∵bn=
2n-1
(n+1)an
=
2n-1
n(n+1)2n-1
=
1
n(n-1)
=
1
n
-
1
n+1

∴Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
点评:本题考查数列的求和,着重考查数列的递推关系的应用,突出裂项法求和的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(其中ω>0,|φ|<
π
2
)的图象如图所示,为了得到f(x)的图象,则只要将g(x)=sin2x的图象(  )
A、向左平移
π
3
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
π
6
个单位长度
D、向右平移
π
6
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1n(-x)+ax-
1
x
(a为常用数),在x=-1时取得极值.
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=f(-x)+2x,若方程g(x)-b=0有两个不相等的实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx(a∈R).
(Ⅰ)当a=1时,求曲线y=f(x)在x=2处切线的斜率;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a>0时,求f(x)在区间(0,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+4
(1)作出函数f(x)的图象;
(2)指出函数f(x)的单调递增区间,并用单调性的定义证明;
(3)求函数y=f(x),x∈[t,t+1]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=xex+1.
(Ⅰ)证明:g(x)>0;
(Ⅱ)证明:
ex
xex+1
≤1;
(Ⅲ)当x>0,不等式
ex
xex+1
1
ax2+1
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

多面体至少有几个面?这个多面体是怎样的几何体?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mlnx+
1
x
-x,g(x)=
1
m
lnx.
(1)当x≥1时,总有f(x)≤0,求m的取值范围;
(2)当m∈[3,+∞)时,曲线F(x)=f(x)+g(x)上总存在相异两点A(x1,f(x1))、B(x2,f(x2)),使得曲线F(x)在点A、B处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3ax2+4,其中a≥0.
(Ⅰ)若a=1,求函数f(x)的极值点和极值;
(Ⅱ)求函数f(x)在区间[0,+∞)上的最小值.

查看答案和解析>>

同步练习册答案