精英家教网 > 高中数学 > 题目详情
画出正弦函数y=sinx,(x∈R)的简图,并根据图象写出-
1
2
≤y≤
3
2
时x的集合.
考点:五点法作函数y=Asin(ωx+φ)的图象
专题:三角函数的图像与性质
分析:先作简图,然后观察在哪些区域能使不等式成立,即可得到结论.
解答: 解:在周期[-
π
2
2
]内,当y=-
1
2
时,x=-
π
6
6

当y=
3
2
,得x=
π
3
3

此时满足不等式-
1
2
≤y≤
3
2
的解为-
π
6
≤x≤
π
3
3
≤x≤
6

∵函数的周期是2kπ,k∈Z,
∴不等式的解为-
π
6
+2kπ≤x≤
π
3
+2kπ,或
3
+2kπ≤x≤
6
+2kπ,
故不等式的解集为{x|-
π
6
+2kπ≤x≤
π
3
+2kπ,或
3
+2kπ≤x≤
6
+2kπ},k∈Z.
点评:本题主要考查三角函数的图象性质,以及三角函数对应不等式的求解,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)不恒等于0,且对任意x,y∈R,满足xf(y)=yf(x),则f(x)的奇偶性为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右两个焦点,若双曲线C上存在点P满足|PF1|:|PF2|=2:1且∠F1PF2=90°,则双曲线C的渐近线方程是(  )
A、x±2y=0
B、2x±y=0
C、5x±4y=0
D、4x±5y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
2
),试求出此函数的解析式,并写出其定义域,判断奇偶性,单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
x|x|
16
+
y|y|
9
=λ(λ<0)
的曲线即为函数y=f(x)的图象,对于函数y=f(x),下列命题中正确的是
 
.(请写出所有正确命题的序号)
①函数y=f(x)在R上是单调递减函数;
②函数y=f(x)的值域是R;
③函数y=f(x)的图象不经过第一象限;
④函数y=f(x)的图象关于直线y=x对称;
⑤函数F(x)=4f(x)+3至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:Sn=
1
a
+
2
a2
+
3
a3
+…+
n
an
(a≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0,a≠1),且f(-2)=
1
4

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=log2[m-f2(x)+4f(x)]若此函数在[0,2]上存在零点,求实数m的取值范围;
(Ⅲ)若
1
3
≤k<1,函数f1(x)=|f(x)-1|-k的零点分别为x1,x2(x1<x2),函数f2(x)=|f(x)-1|-
k
2k+1
的零点分别为x3,x4(x3<x4),求x1-x2+x3-x4的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国高铁技术发展迅速,铁道部门计划在A,B两城市之间开通高速列车,假设列车在试运行期间,每天在8:00~9:00,9:00~10:00两个时间段内各发一趟由A城开往B城的列车(两车发车情况互不影响),A城发车时间及概率如下表所示:
发车时间8:108:308:509:109:309:50
概率
1
6
1
3
1
2
1
6
1
3
1
2
若甲、乙两位旅客打算从A城到B城,他们到达A城火车站的时间分别是周六的8:00和周日的8:20.(只考虑候车时间,不考虑其他因素)
(1)求甲、乙两人候车时间相等的概率;
(2)设乙候车所需时间为随机变量X,求ξ的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1.
(1)求异面直线BA1与CC1所成角的大小;
(2)求证:A1C⊥平面BC1D;
(3)求三棱锥C-BDC1的表面积.

查看答案和解析>>

同步练习册答案