精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax(a>0,a≠1),且f(-2)=
1
4

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=log2[m-f2(x)+4f(x)]若此函数在[0,2]上存在零点,求实数m的取值范围;
(Ⅲ)若
1
3
≤k<1,函数f1(x)=|f(x)-1|-k的零点分别为x1,x2(x1<x2),函数f2(x)=|f(x)-1|-
k
2k+1
的零点分别为x3,x4(x3<x4),求x1-x2+x3-x4的最大值.
考点:指数函数综合题,对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(Ⅰ)利用待定系数法即可求函数f(x)的解析式;
(Ⅱ)若函数g(x)=log2[m-f2(x)+4f(x)]若此函数在[0,2]上存在零点,则等价为m-f2(x)+4f(x)=1在[0,2]上成立,利用换元法,结合二次函数的图象和性质,即可得到结论求实数m的取值范围;
(Ⅲ)根据零点存在条件,结合指数幂的运算法则,建立条件关系即可得到结论.
解答: 解:(Ⅰ)∵f(-2)=
1
4

∴f(-2)=a-2=
1
4

解得a=2,即函数f(x)的解析式f(x)=2x
(Ⅱ)若g(x)=log2[m-f2(x)+4f(x)]在[0,2]上存在零点,
即等价为m-f2(x)+4f(x)=1在[0,2]上成立,
则m=f2(x)-4f(x)+1=(2x2-4×2x+1,
设t=f(x)=2x;则1≤t≤4,
则y=t2-4t+1=(t-2)2-3,
∵1≤t≤4,
∴-3≤t≤1,
即-3≤m≤1,则实数m的取值范围[-3,1].
(Ⅲ)由f1(x)=|f(x)-1|-k=0得|f(x)-1|=k,即f(x)=1-k,或f(x)=1+k,
2x1=1-k,=2x2=1+k,
由f2(x)=|f(x)-1|-
k
2k+1
=0得|f(x)-1|=
k
2k+1

即f(x)=1+
k
2k+1
或f(x)=1-
k
2k+1

2x3=1-
k
2k+1
=
k+1
2k+1
2x4=1+
k
2k+1
=
3k+1
2k+1

2x2-x1=
1+k
1-k
2x4-x3=
3k+1
k+1

2x2-x1+x4-x3=
3k+1
1-k
=-3+
4
1-k

1
3
≤k<1,∴-3+
4
1-k
≥3

2x2-x1+x4-x3=
3k+1
1-k
=-3+
4
1-k
≥3,
即x2-x1+x4-x3≥log23,
则x1-x2+x3-x4=-(x2-x1+x4-x3)≤-log23,
故x1-x2+x3-x4的最大值是-log23,
点评:本题主要考查指数函数的图象和性质,考查函数零点的应用,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的变分别为a,b,c,则“A≤B“是“sinA≤sinB“的(  )条件.
A、充分必要
B、必要不充分
C、充分不必要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别是F1、F2过F2垂直x轴的直线与双曲线C的两渐近线的交点分别是M、N,若△MF1N为正三角形,则该双曲线的离心率为(  )
A、
21
3
B、
3
C、
13
D、2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

画出正弦函数y=sinx,(x∈R)的简图,并根据图象写出-
1
2
≤y≤
3
2
时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
6n-5(n为奇数)
4n(n为偶数)
,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市调研考试后,某校对甲乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
3
11

优秀非优秀合计
甲班10
乙班30
合计110
(1)请完成上面的列联表
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”
参考公式与临界值表:K2=
n(ad-bc)2
(a+b)(c+d)(c+a)(b+d)

P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点分别为A(-4,2),B(2,4),C(4,0).
(Ⅰ)求△ABC三边所在的直线方程;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则
a2-a1
b2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:表(一)
做不到“光盘”能做到“光盘”
4510
3015
表(二)
P(k2≥k)0.100.050.025
k2.7063.8415.024
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

(1)估计该市居民中,能做到“光盘”行动的居民比例;
(2)判断是否有90%以上的把握认为“该市居民能否做到”光盘”与性别有关?

查看答案和解析>>

同步练习册答案