精英家教网 > 高中数学 > 题目详情
3.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.曲线C1的方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为C2:ρcosθ+ρsinθ=1,若曲线C1与C2相交于A、B两点.
(1)求|AB|的值;  
(2)求点M(-1,2)到A、B两点的距离之积.

分析 (1)先将两曲线的方程都化成直角坐标方程,从而有普通方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1;曲线C2即直线x+y-1=0,把直线的方程代入椭圆的方程,化简后得到一个关于x的一元二次方程,即可求出|AB|的长;
(2)由(1)中的关于x的一元二次方程得到A,B两点的坐标,再利用两点间的距离公式求出点M(-1,2)到A、B两点的距离,最后再求出点M(-1,2)到A、B两点的距离之积.

解答 解:(1)曲线C1的方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)的普通方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1,
曲线C2的极坐标方程为:ρcosθ+ρsinθ=1,的直角坐标方程为:x+y-1=0,
把直线 x+y-1=0代入3x2-4x=0
∴x1=0,x2=$\frac{4}{3}$,
∴|AB|=$\sqrt{2}$•$\frac{4}{3}$=$\frac{4\sqrt{2}}{3}$.
(2)由(1)得A,B两点的坐标分别为A(0,1),B($\frac{4}{3}$,-$\frac{1}{3}$),
∴|MA|2=(0+1)2+(1-2)2=2,|MB|2=($\frac{4}{3}$+1)2+(-$\frac{1}{3}$-2)2=$\frac{98}{9}$,
则点M到A,B两点的距离之积为|MA|•|MB|=$\frac{14}{3}$.

点评 此题考查学生掌握并灵活运用直线与圆的参数方程,简单曲线的极坐标方程,两点间的距离公式等,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知二项式(2x+$\frac{1}{x}$)n的展开式中第3项系数与第4项系数相等,求含$\frac{1}{{x}^{2}}$的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|-3≤x≤1},B={x|log2x≤1},则A∩B=(  )
A.{x|-3≤x≤1}B.{x|0<x≤1}C.{x|-3≤x≤2}D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{4}$-α)=$\frac{1}{2}$,则cos($\frac{π}{4}$+α)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,过A(0,-b),B(a,0)的直线与原点的距离为$\frac{\sqrt{3}}{2}$
(1)求椭圆的方程;
(2)已知定点E(-1,0),直线y=kx+t与椭圆交于不同两点C,D,试问:对任意的t>0,是否都存在实数k,使得以线段CD为直径的圆过点E?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.化简$\sqrt{2-{{sin}^2}1+cos2}$=(  )
A.$\sqrt{3}cos1$B.$-\sqrt{3}cos1$C.$\sqrt{3}sin1$D.$-\sqrt{3}sin1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),
[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(Ⅰ)求直方图中x的值;
(Ⅱ)在月平均用电量为,[220,240),[240,260),[260,280)的三用户中,用分层抽样的方法抽取10居民,则月平均用电量在[220,240)的用户中应抽取多少户?
(Ⅲ)求月平均用电量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆的对称轴为坐标轴,中心在原点,且过(3,0)点,其离心率e=$\frac{{\sqrt{6}}}{3}$,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数在(0,+∞)上是增函数的是(  )
A.y=ln(x-2)B.y=-$\sqrt{x}$C.y=x-x-1D.y=($\frac{1}{2}$)|x|

查看答案和解析>>

同步练习册答案