精英家教网 > 高中数学 > 题目详情
11.已知sin($\frac{π}{4}$-α)=$\frac{1}{2}$,则cos($\frac{π}{4}$+α)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 直接利用诱导公式化简求解即可.

解答 解:sin($\frac{π}{4}$-α)=$\frac{1}{2}$,
cos($\frac{π}{4}$+α)=sin($\frac{π}{2}$-$\frac{π}{4}$-α)=sin($\frac{π}{4}$-α)=$\frac{1}{2}$,
故选:D.

点评 本题考查诱导公式的应用,三角函数化简求值,考查整体思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}为等比数列,前n项和为Sn,若S3S5-${S}_{4}^{2}$=-16,a2a4=32,求S4的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动点M在运动过程中,总满足|MF1|+|MF2|=2$\sqrt{2}$,其中F1(-1,0),F2(1,0).
(1)求动点M的轨迹E的方程;
(2)斜率存在且过点A(0,1)的直线l与轨迹E交于A,B两点,轨迹E上存在一点P满足$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a为实数,f(x)=x3-ax2-4x+4a.
(1)若f'(-1)=0,求a的值及f(x)在[-2,2]上的最值;
(2)若f(x)在(-∞,-2)和[2,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知(1+ax)5(1-2x)4的展开式中x2的系数为-16,则实数a的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F是双曲线C:x2-$\frac{y^2}{8}$=1的左焦点,P是C右支上一点,A(0,6$\sqrt{6}$),当△APF周长最小时,该三角形的面积为(  )
A.$12\sqrt{6}$B.$\frac{{18\sqrt{2}}}{5}$C.$2\sqrt{2}$D.$\frac{{18\sqrt{6}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.曲线C1的方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为C2:ρcosθ+ρsinθ=1,若曲线C1与C2相交于A、B两点.
(1)求|AB|的值;  
(2)求点M(-1,2)到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\frac{{1+\sqrt{3}tan{{50}°}}}{{\sqrt{1-cos{{100}°}}}}$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=|x-1|,x∈[-1,2]的值域是[0,2].

查看答案和解析>>

同步练习册答案