精英家教网 > 高中数学 > 题目详情
15.已知数列{an}为等比数列,前n项和为Sn,若S3S5-${S}_{4}^{2}$=-16,a2a4=32,求S4的值.

分析 设等比数列{an}的首项为a1,公比为q,当q=1时,已知不成立,当q≠1时,由已知列式求得首项和公比,再代入等比数列的前n项和得答案.

解答 解:设等比数列{an}的首项为a1,公比为q,
若q=1,由S3S5-${S}_{4}^{2}$=-16,a2a4=32,得
$15{{a}_{1}}^{2}-16{{a}_{1}}^{2}=-16$,${{a}_{1}}^{2}=32$,此两式不同时成立,∴q≠1;
q≠1时,由S3S5-${S}_{4}^{2}$=-16,a2a4=32,得
$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{3})}{1-q}•\frac{{a}_{1}(1-{q}^{5})}{1-q}-(\frac{{a}_{1}(1-{q}^{4})}{1-q})^{2}=-16}\\{{{a}_{1}}^{2}{q}^{4}=32}\end{array}\right.$,
化简得:$\left\{\begin{array}{l}{{{a}_{1}}^{2}{q}^{3}=16}\\{{{a}_{1}}^{2}{q}^{4}=32}\end{array}\right.$,解得${a}_{1}=±\sqrt{2}$,q=2.
∴${S}_{4}=\frac{±\sqrt{2}(1-{2}^{4})}{1-2}=±15\sqrt{2}$.

点评 本题考查等比数列的通项公式,考查了等比数列的前n项和,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某公共汽车,行进的站数与票价关系如下表:
行进的站数123456789
票价111222333
此函数的关系除了图表之外,能否用其他方法表示?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=kx+b为一次函数,且f(2),f(5),f(4)成等比数列,f(8)=15.
(1)求f(x)的解析式;
(2)设数列{an}满足an=2f(n)(n∈N*),求a1a2a3…an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,a,b分别为内角A,B的对边,且A=30°,b=6,若由条件解三角形有两个解,则a的取值范围是(3,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2013年4月20日,四川省雅安市发生7.0级地震,某运输队接到给灾区运送物资任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t救灾物资.已知每辆卡车每天往返的次数为A型车16次,B型车12次,每辆卡车每天往返的成本为A型车240元,B型车378元,问每天派出A型车与B型车各多少辆,运输队所花的成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和Sn满足Sn=2an-2.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,数列{bn}的前n项和为Tn,若Tn=$\frac{19}{20}$,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二项式(2x+$\frac{1}{x}$)n的展开式中第3项系数与第4项系数相等,求含$\frac{1}{{x}^{2}}$的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设有某进制数4+4=10,根据这个运算规则,十进制运算3+6的结果写成该进制为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{4}$-α)=$\frac{1}{2}$,则cos($\frac{π}{4}$+α)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案