精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x∈R,|2x+1|>a-2|x|,若¬p是真命题,则实数a的取值范围是[1,+∞).

分析 先求出p的否定,再根据绝对值的几何意义即可求出a的范围.

解答 解:p:?x∈R,|2x+1|>a-2|x|,
即|2x+1|+2|x|>a,
即|x+$\frac{1}{2}$|+|x|>$\frac{a}{2}$,
∵¬p是真命题,
∴|x+$\frac{1}{2}$|+|x|≤$\frac{a}{2}$,
根据绝对值的几何意义可得∴|x+$\frac{1}{2}$|+|x|≥$\frac{1}{2}$,
∴$\frac{1}{2}$≤$\frac{a}{2}$,
∴a≥1,
故答案为:[1,+∞)

点评 本题考查了命题的否定,考绝对值的几何意义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某班共46人,从A,B,C,D,E五位候选人中选班长,全班每人只投一票,且每票只选一人.投票结束后(没人弃权):若A得25票,B得票数占第二位,C、D得票同样多,得票最少的E只得4票,那么B得票的票数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=2-i(i是虚数单位)的虚部为(  )
A.-iB.iC.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在各项均为正数的等比数列{an}中,am-1•am+1=2am(m≥2),数列{an}的前n项积为Tn,若T2m-1=512,则m的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2cosωx,-1),$\overrightarrow{n}$=($\sqrt{3}$sinωx+cosωx,1)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,若函数f(x)图象与x轴的两个相邻交点的距离为$\frac{π}{2}$.
(1)求函数f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=1,a=3,BC边上的高线长为$\frac{3\sqrt{3}}{2}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,动点S到点F(1,0)的距离与到直线x=2的距离的比值为$\frac{\sqrt{2}}{2}$
( I)求动点S的轨迹E的方程;
( II)过点F作与x轴不垂直的直线l交轨迹E于P,Q两点,在线段OF上是否存在点M(m,0),使得($\overrightarrow{MP}$+$\overrightarrow{MQ}$)•$\overrightarrow{PQ}$=0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线x-y+m=0被圆(x-1)2+y2=5截得的弦长为2$\sqrt{3}$,则m的值为(  )
A.1B.-3C.1或-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t[0,15)[15,30)[30,45)[45,60)[60,75)[75,90)
男同学人数711151221
女同学人数89171332
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)-4cos2$\frac{ωx}{2}$+3(其中ω>0,x∈R).
(Ⅰ)求函数f(x)的值域;
(Ⅱ)若函数f(x)的图象与直线y=1的相邻两交点间的距离为$\frac{π}{2}$,求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案