精英家教网 > 高中数学 > 题目详情
15.已知抛物线的方程为y2=2px(p>0),O为坐标原点,A、B为抛物线上的点,若△OAB为等边三角形,且面积为12$\sqrt{3}$,则p的值为(  )
A.2B.1C.3D.$\frac{1}{2}$

分析 设B(x1,y1),A(x2,y2),由于|OA|=|OB|,可得x12+y12=x22+y22.代入化简可得:x1=x2.由抛物线对称性,知点B、A关于x轴对称.不妨设直线OB的方程为:y=$\frac{\sqrt{3}}{3}$x,与抛物线方程联立解出即可得出.

解答 解:设B(x1,y1),A(x2,y2),
∵|OA|=|OB|,∴x12+y12=x22+y22
又∵y12=2px1,y22=2px2
∴x22-x12+2p(x2-x1)=0,
即(x2-x1)(x1+x2+2p)=0.
又∵x1、x2与p同号,∴x1+x2+2p≠0.
∴x2-x1=0,即x1=x2
由抛物线对称性,知点B、A关于x轴对称.
不妨设直线OB的方程为:y=$\frac{\sqrt{3}}{3}$x,
联立y2=2px,解得B(6p,2$\sqrt{3}$p).
∵面积为12$\sqrt{3}$,
∴$\frac{\sqrt{3}}{4}•(4\sqrt{3}p)^{2}=12\sqrt{3}$,∴p=1
故选B.

点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、等边三角形的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,PA=PD,M为CD的中点,BD⊥PM.
(1)求证:平面PAD⊥平面ABCD;
(2)若∠PAD=60°,求直线AB与平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.α是三角形的内角,则函数y=-2sin2α-3cosα+7的最值情况是(  )
A.既没有最大值,又没有最小值B.既有最大值10,又有最小值$\frac{31}{8}$
C.只有最大值10?D.只有最小值$\frac{31}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a2lnx-x2+ax(a≠0),g(x)=(m-1)x2+2mx-1.
(1)求函数f(x)的单调区间;
(2)若a=1时,关于x的不等式f(x)≤g(x)恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设i是虚数单位,z=$\frac{3-i}{1-i}$,则$\overline{z}$等于(  )
A.2-iB.2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足an+1=2an-n+1,n∈N*,a1=3,
(1)求a2-2,a3-3,a4-4的值;
(2)根据(1)的结果试猜测{an-n}是否为等比数列,证明你的结论,并求出{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,长方体ABCD-A1B1C1D1中,已知AB=BC=2,AA1=1,线段AC1的三个视图所在的直线所成的最小角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f:x→x2是集合M到集合N的映射,若N={4,0,9},则M不可能是(  )
A.{0}B.{2,3}C.{0,1,2}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.非空集合G关于运算⊕满足:(1)对任意a,b∈G,都有a⊕b∈G;
(2)存在e∈G,使得对一切a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.
现给出下列集合和运算:
①G={非负整数},⊕为整数的加法;
②G={偶数},⊕为整数的乘法;
③G={平面向量},⊕为平面向量的加法;
④G={二次三项式},⊕为多项式的加法;
⑤G={虚数},⊕为复数的乘法.
其中G关于运算⊕为“融洽集”的是(  )
A.①③B.②③C.①⑤D.②③④

查看答案和解析>>

同步练习册答案