分析 (1)根据抛物线的性质即可求出,
(2)①联立方程组,根据韦达定理可得yD=y=$\frac{{y}_{2}}{{x}_{2}}$x1=$\frac{\frac{1}{4}{{x}_{2}}^{2}}{{x}_{2}}$•x1=$\frac{{x}_{1}{x}_{2}}{4}$=-m为定值,
②易知四边形ODMG为梯形,求出面积的表达式,利用导数求出函数的最值即可.
解答 解:(1)∵A(2$\sqrt{2}$,2)在抛物线x2=2py上,
∴(2$\sqrt{2}$)2=4p,解得p=2,
∴抛物线的方程为:x2=4y,
(2)①由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}=4y}\end{array}\right.$,消去y整理得x2-4kx-4m=0,
∵M(x1,y1),N(x2,y2)(y1<y2)是y=kx+m(k>0)与抛物线C的交点,
∴x1+x2=4k,x1x2=-4m,
∵直线ON的方程为:y=$\frac{{y}_{2}}{{x}_{2}}$x,
∴yD=y=$\frac{{y}_{2}}{{x}_{2}}$x1=$\frac{\frac{1}{4}{{x}_{2}}^{2}}{{x}_{2}}$•x1=$\frac{{x}_{1}{x}_{2}}{4}$=-m为定值,
∴点G在一条定直线y=-m上,
②易知四边形ODMG为梯形,
∴S=$\frac{1}{2}$[-m+(-m-y1)]x1=$\frac{1}{2}$(-2m-$\frac{{x}_{1}^{2}}{4}$)x1=mx1-$\frac{1}{8}{x}_{1}^{2}$,
结合图形可知0<x1<2$\sqrt{-m}$(x1=-$\sqrt{-\frac{8}{3}m}$舍去)
由S′=-m-$\frac{3}{8}{x}_{1}^{2}$,当S′=0时,
解得x1=$\sqrt{-\frac{8}{3}m}$<2$\sqrt{-m}$,(x1=-$\sqrt{-\frac{8}{3}m}$舍去),
当x1∈(0,$\sqrt{-\frac{8}{3}m}$)上单调递增,在($\sqrt{-\frac{8}{3}m}$,2$\sqrt{-m}$)单调递减,
∴当x1=$\sqrt{-\frac{8}{3}m}$时,Smax=-m$\sqrt{-\frac{8}{3}m}$-$\frac{1}{8}$(-$\frac{8}{3}$m•)$\sqrt{-\frac{8}{3}m}$=-$\frac{4m\sqrt{-6m}}{9}$
点评 本题考查了抛物线的性质以及韦达定理和导数再面积的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin({\frac{x}{2}+\frac{5π}{6}})$ | B. | $y=sin({2x-\frac{π}{6}})$ | C. | y=2sin2x-1 | D. | $y=cos({2x-\frac{π}{6}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}a$ | B. | $\frac{{\sqrt{2}}}{2}a$ | C. | a | D. | $\frac{1}{2}a$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com