精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1上一点P满足:PF1≥2PF2则点P 的纵坐标的取值范围为[$\frac{4}{3},2$].

分析 由椭圆方程求出椭圆的离心率,由已知结合椭圆定义得到PF2 的范围,再由椭圆第二定义转化为P的纵坐标求解.

解答 解:由椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1,得a2=4,b2=3
∴$c=\sqrt{{a}^{2}-{b}^{2}}=1$,
则e=$\frac{c}{a}=\frac{1}{2}$,
由PF1+PF2=2a=4,PF1≥2PF2 ,得4=PF1+PF2≥3PF2
∴$P{F}_{2}≤\frac{4}{3}$,
再由$\frac{P{F}_{2}}{\frac{{a}^{2}}{c}-{y}_{P}}-e=\frac{1}{2}$,得$P{F}_{2}=\frac{1}{2}(\frac{{a}^{2}}{c}-{y}_{P})=\frac{1}{2}(4-{y}_{P})$,
∴$\frac{1}{2}(4-{y}_{P})≤\frac{4}{3}$,得${y}_{P}≥\frac{4}{3}$,又P在椭圆上,
∴$\frac{4}{3}≤{y}_{P}≤2$.
故答案为:[$\frac{4}{3},2$].

点评 本题考查椭圆的简单性质,考查了数学转化思想方法,借助于椭圆定义求解是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.有2个人在一座6层大楼的底层进入电梯,假设每一个人从第二层开始在每次离开电梯是等可能的,求2人在不同层离开电梯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设n∈N*,f(n)=3n+7n-2.
(1)求f(1),f(2),f(3)的值;
(2)证明:对任意正整数n,f(n)是8的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)是一次函数,是R上的增函数且满足f[f(x)]=4x-1,则f(x)=$2x-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={(x,y)|y=-4x+6},B={(x,y)|y=5x-3},则A∩B等于(  )
A.{1,2}B.{(1,2)}C.{(2,1)}D.{(x,y)|x=1或y=2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知两条直线l1:y=$\sqrt{3}$x,l2:ax+y=0,a为实数,当这条直线的夹角在[0,$\frac{π}{3}$)内变动时a的取值范围是(  )
A.(-∞,$\sqrt{3}$)B.(-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$)C.(-∞,0)∪($\sqrt{3}$,+∞)D.(-$\sqrt{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.y=$\frac{{x}^{2}+4}{x}$(1≤x≤3)的值域为[4,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知偶函数f(x)的定义域为R,且f(1+x)=f(1-x),又当x∈[0,1]时,f(x)=x,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{4}x(x>0)}\\{{4}^{x}(x≤0)}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-4,4]上的零点个数为(  )
A.8B.6C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设x,y∈R,并且2x+(3x-2y)i=3y-4-i,求x,y的值.

查看答案和解析>>

同步练习册答案