精英家教网 > 高中数学 > 题目详情
16.已知两条直线l1:y=$\sqrt{3}$x,l2:ax+y=0,a为实数,当这条直线的夹角在[0,$\frac{π}{3}$)内变动时a的取值范围是(  )
A.(-∞,$\sqrt{3}$)B.(-$\sqrt{3}$,-$\frac{\sqrt{3}}{3}$)C.(-∞,0)∪($\sqrt{3}$,+∞)D.(-$\sqrt{3}$,0)

分析 根据直线l1的方程求出它的斜率,可得它的倾斜角,根据l2和它的夹角在[0,$\frac{π}{3}$),可得l2的斜率-a的范围,从而得出a的范围.

解答 解:∵直线l1:y=$\sqrt{3}$x的斜率为$\sqrt{3}$,倾斜角为$\frac{π}{3}$,l2:ax+y=0,a为实数,
当这条直线的夹角在[0,$\frac{π}{3}$)内变动时,直线l2的倾斜角的范围为(0,$\frac{2π}{3}$),
故直线l2的斜率-a满足-a<-$\sqrt{3}$,或-a>0,求得a>$\sqrt{3}$,或 a<0,
的取值范围为(-∞,0)∪($\sqrt{3}$,+∞),
故选:C.

点评 本题主要考查直线的倾斜角和斜率,两条直线的夹角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某海轮以30n mile/h的速度航行,在A点测得海面上油井P在南偏东60°方向,向北航行40min后达到B点,测得油井P在南偏东30°方向,海轮改为北偏东60°的航向再行驶80min到达C点,则P,C间的距离为(  )
A.20n mileB.20$\sqrt{7}$n mileC.30n mileD.30$\sqrt{7}$n mile

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)定义域为[-1,1],若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)判断并证明函数f(x)的奇偶性;
(2)判断并证明函数f(x)的单调性;
(3)设f(1)=1,若f(x)<m2-2am+1,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数g(x)=$\frac{{4}^{x}+n}{{2}^{x}}$是奇函数,f(x)=log4(4x+1)-mx是偶函数.
(1)求m+n的值;
(2)设h(x)=f(x)+$\frac{1}{2}$x,若g(x)>h[log4(2a+1)]对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1上一点P满足:PF1≥2PF2则点P 的纵坐标的取值范围为[$\frac{4}{3},2$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{4}^{x}-a}{{2}^{x}}$是奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)用定义证明函数f(x)在R上的单调性;
(Ⅲ)若对任意的x∈R,不等式f(x2-x)+f(2x2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{2^x}+1,x<1\\{x^2}+ax,x≥1\end{array}$,若f(f(0))=4a,则实数a等于(  )
A.$\frac{1}{2}$B.$\frac{4}{5}$C.2D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为得到函数$y=2sin(2x+\frac{π}{4})$的图象,只需将函数y=2cos2x的图象向右平移$a(0<a<\frac{π}{2})$个单位,则a=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个直角△ABC的三边分别是AC=3,BC=4,AB=5,将这个三角形绕直角边BC旋转一周,所形成的几何体的表面积是24π.

查看答案和解析>>

同步练习册答案