精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=alnx-2x2(a∈R)
(1)求f(x)的极值;
(2)设g(x)=f(x)+3x2+$\frac{2}{x}$,g(x)的导数为g′(x),对于两个不相等的正数x1,x2,求证:当a≤4时|g′(x1)-g′(x2)|>|x1-x2|.

分析 (1)求导,f′(x)=$\frac{a}{x}$-4x=$\frac{a-4{x}^{2}}{x}$,分类当a≤0,f′(x)<0,函数无极值,当a>0,f′(x)=0,求得可能的极值点,根据函数的单调性,求得f(x)的极值;
(2)求得g(x),求导,|g′(x1)-g′(x2)|=|x1-x2||2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|,欲证|g′(x1)-g′(x2)|>|x1-x2|.只需证|2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|>1,根据基本不等式的关系,只要证:2+$\frac{4}{(\sqrt{{x}_{1}{x}_{2}})^{3}}$-$\frac{4}{{x}_{1}{x}_{2}}$>0,构造辅助函数,t=$\frac{1}{\sqrt{{x}_{1}{x}_{2}}}$,求导μ′(t)=4t(3t-2),根据函数单调性,求得函数的极小值,f(x)极小值=$\frac{38}{27}$>1,即可证明|g′(x1)-g′(x2)|>|x1-x2|.

解答 解:(1)函数f(x)的定义域为(0,+∞),
f′(x)=$\frac{a}{x}$-4x=$\frac{a-4{x}^{2}}{x}$,
若a≤0,则f′(x)<0恒成立,
则f(x)在(0,+∞),上为单调递减函数,既无极小值也无极大值;
当a>0,f′(x)=$\frac{(\sqrt{a}-2x)(\sqrt{a}+2x)}{x}$,
令f′(x)=0,求得x=$\frac{\sqrt{a}}{2}$或x=-$\frac{\sqrt{a}}{2}$,
当0<x$\frac{\sqrt{a}}{2}$时,f′(x)>0,函数单调递增,当x>$\frac{\sqrt{a}}{2}$,f′(x)<0,函数f(x)单调递减,
x=$\frac{\sqrt{a}}{2}$处f(x)取极大值,极大值为f($\frac{\sqrt{a}}{2}$)=aln$\frac{\sqrt{a}}{2}$-$\frac{a}{2}$,无极小值,
证明:(2)g(x)=x2+$\frac{3}{x}$+alnx,
求导g(x)=2x-$\frac{2}{{x}^{2}}$+$\frac{a}{x}$,
∴|g′(x1)-g′(x2)|=|2x1-$\frac{2}{{x}_{1}^{2}}$+$\frac{a}{{x}_{1}}$-(2x2-$\frac{2}{{x}_{2}^{2}}$+$\frac{a}{{x}_{2}}$)|,
=|x1-x2||2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|,
由|g′(x1)-g′(x2)|>|x1-x2|,
∴|2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|>1,
2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$>2+$\frac{4}{(\sqrt{{x}_{1}{x}_{2}})^{3}}$-$\frac{a}{{x}_{1}{x}_{2}}$≥2+$\frac{4}{(\sqrt{{x}_{1}{x}_{2}})^{3}}$-$\frac{4}{{x}_{1}{x}_{2}}$,
设t=$\frac{1}{\sqrt{{x}_{1}{x}_{2}}}$,μ(t)=2+4t3-4t2,(t>0),
μ′(t)=4t(3t-2),
列表如下:

 t (0,$\frac{2}{3}$) $\frac{2}{3}$ ($\frac{2}{3}$,+∞)
 μ′(t)-+
 μ(t) 极小值$\frac{38}{27}$
∴μ(x)≥$\frac{38}{27}$>1,即2+$\frac{4}{(\sqrt{{x}_{1}{x}_{2}})^{3}}$-$\frac{a}{{x}_{1}{x}_{2}}$>1,|2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|>1,
∴|g′(x1)-g′(x2)|>|x1-x2||2+$\frac{2({x}_{1}+{x}_{2})}{{x}_{1}^{2}{x}_{2}^{2}}$-$\frac{a}{{x}_{1}{x}_{2}}$|>|x1-x2|.
∴a≤4时,|g′(x1)-g′(x2)|>|x1-x2|.

点评 本题考查利用导数求函数的极值及单调性,考查导数的应用,考查计算能力,分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知sinθ+cosθ=$\frac{1}{5}$,且θ∈(0,π),求下列各式的值:
(1)sinθcosθ;
(2)cos2θ-sin2θ;
(3)sin3θ-cos3θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,若在双曲线上存在点P,使得∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x+a)ex(e为自然对数的底数),若x=1是函数f(x)的极值点.
(Ⅰ)求a的值;         
(Ⅱ)任意x1,x2∈[0,2]时,证明:|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点(0,0)和点(-1,1)在直线2x+y+m=0的同侧,则m的取值范围是(  )
A.m>1或m<0B.m>2或m<1C.0<m<1D.1<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax2-(2a+1)x+2.
(1)若f(x)>-x-1恒成立,求a的取值范围;
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=x3-2ax+a在(1,2)内有极小值,则实数a的取值范围是(  )
A.(0,$\frac{3}{2}$)B.(0,3)C.($\frac{3}{2}$,6)D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出四个命题:
①若x2-3x+2=0,则x=1或x=2;
②若x=y=0,则x2+y2=0;
③已知x,y∈N,若x+y是奇数,则x,y中一个是奇数,一个偶数;
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的两根,则x1,x2可以是一椭圆与一双曲线的离心率.
那么(  )
A.①的逆命题为真B.②的否命题为假C.③的逆命题为假D.④的逆否命题为假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列命题:其中正确命题的序号是①③ (把你认为正确的序号都填上)
①函数f(x)=4cos(2x+$\frac{π}{3}$)的一个对称中心为(-$\frac{5π}{12}$,0);
②若α,β为第一象限角,且α>β,则tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$;
④点O是三角形ABC所在平面内一点,且满足$\overrightarrow{OA}•\overrightarrow{OB}=\overrightarrow{OB}•\overrightarrow{OC}=\overrightarrow{OC}•\overrightarrow{OA}$,则点O是三角形ABC的内心.

查看答案和解析>>

同步练习册答案