精英家教网 > 高中数学 > 题目详情
椭圆16x2+9y2=144长轴长是(  )
A、4B、3C、8D、6
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:椭圆16x2+9y2=144即为椭圆
x2
9
+
y2
16
=1,即有a=4,2a=8.
解答: 解:椭圆16x2+9y2=144即为
椭圆
x2
9
+
y2
16
=1,
则a=4,b=3,
即有2a=8.
故选C.
点评:本题考查椭圆的方程和性质,注意首先化为椭圆的标准方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明:2(1-sinα)(1+cosα)=(1-sinα+cosα)2

查看答案和解析>>

科目:高中数学 来源: 题型:

若正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为2
3
,则此三棱柱外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
e-x-2(x≤0)
2ax-1(x>0)
(a是常数且a>0).给出下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③函数f(x)在(-∞,0)的零点是(ln
1
2
,0);
④若f(x)>0,在[
1
2
,+∞)上恒成立,则a的取值范围是(1,+∞);
⑤对任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2为椭圆
x2
25
+
y2
9
=1的两焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=14,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.
(I)求数列{an}的通项;
(Ⅱ)设数列{bn-an}是等比数列,且b2=7,b5=91,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为(0,-1),点(an,an+1)在函数x-y+2=0的图象上
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和为Sn,求
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于实数x的不等式|x+1|+|x-2|>a2-2a恒成立,则实数a的取值范围是(  )
A、(-1,3)
B、[-1,3]
C、(-∞,-1)∪(3,+∞)
D、(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx(a不是0)
(Ⅰ)若a=1,求函数f(x)的极值和单调区间;
(Ⅱ) 若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案