精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$,则f(log27)的值为(  )
A.$\frac{7}{2}$B.$\frac{7}{4}$C.$\frac{7}{8}$D.$\frac{7}{16}$

分析 由已知及对数、指数的运算法则即可计算求值.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$,
∴f(log27)=f(${log}_{2}^{7}-1$)=f(${log}_{2}^{\frac{7}{4}}$)=${2}^{{log}_{2}^{\frac{7}{4}}}$=$\frac{7}{4}$.
故选:B.

点评 本题主要考查了对数、指数的运算,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.解下列不等式:
(1)|4x2-10x-3|<3;
(2)|$\frac{3x}{{x}^{2}-4}$|≤1;
(3)|2x+1|>|5-x|;
(4)|x-x2-2|>x2-3x-4;
(5)|x-3|>|x+5|+7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C的对边分别是a,b,c.若sinB=2sinC,a2-b2=$\frac{3}{2}$bc,则角A等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a(x-\frac{1}{x})-mlnx(a,m∈R,m≠0)$.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为2x-y-m=0,求a、m的值;
(2)若m=1且关于x的不等式f′(x)≥0在[2,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U=R,A={x|$\frac{x-1}{x-2}$≥0,x∈R},则CRA={x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.曲线y=$\frac{sinx}{x}$在点M(π,0)处的切线与两坐标轴围成的三角形区域为D(不含三角形边界).若点P(x,y)是区域D内的任意一点,则x+4y的取值范围为(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法:
①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为$\stackrel{∧}{y}$=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
②命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
③相关系数r越小,表明两个变量相关性越弱;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握认为这两个变量间有关系;
⑤已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤5)=0.79,则P(ξ≤-1)=0.21;
其中错误的个数是(  )
本题可参考独立性检验临界值表:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a∈R,则“a=1”是“直线ax+y-1=0与直线x+ay+5=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=cos2(x+$\frac{π}{2}$)的单调递增区间(  )
A.(kπ,kπ+$\frac{π}{2}$)k∈ZB.(kπ+$\frac{π}{2}$,kπ+π)k∈ZC.(2kπ,2kπ+π)k∈ZD.(2kπ,2kπ+2π)k∈Z

查看答案和解析>>

同步练习册答案