精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)=a(x-\frac{1}{x})-mlnx(a,m∈R,m≠0)$.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为2x-y-m=0,求a、m的值;
(2)若m=1且关于x的不等式f′(x)≥0在[2,+∞)上恒成立,求实数a的取值范围.

分析 (1)利用函数的导数,通过切线方程,求解m,a即可.
(2)利用导函数恒成立,转化构造函数,通过导函数的单调性求解即可.

解答 解:(1)曲线y=f(x)在点(1,f(1))处的切线方程为2x-y-m=0,
函数$f(x)=a(x-\frac{1}{x})-mlnx(a,m∈R,m≠0)$.
可得$f'(x)=a+\frac{a}{x^2}-\frac{m}{x}⇒f'(1)=2a-m=2$,
又(1,f(1))=(1,0)⇒2-0-m=0⇒m=2,
解得a=2.
(2)$f'(x)=\frac{{a{x^2}-x+a}}{x}≥0⇒a≥\frac{x}{{1+{x^2}}}$恒成立,
设函数$g(x)=\frac{x}{{1+{x^2}}}(x≥2)⇒$函数g(x)在[2,+∞)是减函数,
则${g_{max}}(x)=g(2)=\frac{2}{5}$,所以$a≥\frac{2}{5}$.

点评 本题考查函数的导数的应用,构造法的应用,导函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知下列命题:
①抛物线x2=4y的准线方程为y=-1;
②命题“若x2+y2=0,则x=y=0”的逆命题;
③已知人体脂肪含量的百分比y与年龄x(岁)之间的线性回归方程为$\widehat{y}$=0.6x-0.5,若某人的年龄每增长一岁,则其脂肪含量的百分比一定增长0.6.
④甲、乙两人下棋,和棋的概率为$\frac{1}{3}$,乙胜的概率为$\frac{1}{2}$,则甲胜的概率为$\frac{1}{2}$.
其中,真命题的序号是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图中所示的是一个算法的流程图,已知a1=3,输出的b=7,则a2的值是11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若在曲线y=f(x)上以点A(x1,f(x1))为切点作切线l1,在曲线y=f(x)上总存在着以点B(x2,f(x2))为切点的切线l2(点B和点A不重合),使得l1∥l2,则对称曲线y=f(x)具有“可平行性”.已知f(x)=$\frac{1}{x}$+(a+$\frac{1}{a}$)lnx-x,其中a>0.
(1)当a=2时,求y=f(x)在点(1,f(1))的切线方程;
(2)求函数y=f(x)在区间(0,1)上的极值;
(3)当a∈[3,+∞)时,函数y=f(x)具有“可平行性”,求x1+x2的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{x-1}{x+1}$(x∈R)的零点是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$=(2k-1,1),$\overrightarrow{b}$=(k,k-1),则“k=$\sqrt{2}$”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-1),x≥1}\end{array}\right.$,则f(log27)的值为(  )
A.$\frac{7}{2}$B.$\frac{7}{4}$C.$\frac{7}{8}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{mx+n}{e^x}$(m,n∈R,e是自然对数的底数).
(Ⅰ)若函数f(x)在点(1,f(x))处的切线方程为x+ey-3=0,求函数f(x)的单调区间;
(Ⅱ)当n=-1,m∈R时,若对于任意$x∈[{\frac{1}{2},2}]$都有f(x)≥x恒成立,求实数m的最小值;
(Ⅲ)当m=n=1时,设函数g(x)=xf(x)+tf′(x)+e-x(t∈R),是否存在实数a,b∈[0,1],使得2g(a)<g(b)?若存在,求出t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα=$\frac{5}{13}$,α∈($\frac{π}{2}$,π),求sin2α,cos2α的值.

查看答案和解析>>

同步练习册答案