| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
分析 根据充分条件和必要条件的定义以及向量数量积的性质进行判断即可.
解答 解:∵向量$\overrightarrow{a}$=(2k-1,1),$\overrightarrow{b}$=(k,k-1),
∴若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=k(2k-1)+k-1=2k2-1=0,
即k2=$\frac{1}{2}$,解得k=$±\frac{\sqrt{2}}{2}$,
即“k=$\sqrt{2}$”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的既不充分也不必要条件,
故选:D
点评 本题主要考查充分条件和必要条件的判断以及向量垂直的应用,比较基础.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{12}π$ | B. | $\frac{7π}{3}$ | C. | $2\sqrt{2}π$ | D. | 3π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在其定义域内为增函数且是奇函数 | |
| B. | 函数f(x)在其定义域内为增函数且是偶函数 | |
| C. | 函数f(x)在其定义域内为减函数且是奇函数 | |
| D. | 函数f(x)在其定义域内为将函数且是偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)sinx为奇函数 | B. | f(x)+cosx为偶函数 | ||
| C. | g(x)sinx为为偶函数 | D. | g(x)+cosx为偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com