精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是-2.

分析 由曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=-5,且y′|x=2=-$\frac{7}{2}$,解方程可得答案.

解答 解:∵直线7x+2y+3=0的斜率k=-$\frac{7}{2}$,
曲线y=ax2+bx(a,b为常数)过点P(2,-5),
且该曲线在点P处的切线与直线7x+2y+3=0平行,
∴y′=2ax+b,
即有$\left\{\begin{array}{l}{4a+2b=-5}\\{4a+b=-\frac{7}{2}}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$,
故a+b=-2,
故答案为:-2.

点评 本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到切线的斜率是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,其中正视图、侧视图均是由直角三角形与半圆构成,俯视图由圆与内接直角三角形构成,根据图中的数据可得此几何体体积为(  )
A.$\frac{4\sqrt{2}π}{3}$+$\frac{4}{3}$B.$\frac{8\sqrt{2}π}{3}$+$\frac{4}{3}$C.$\frac{4\sqrt{2}π}{3}$+2D.$\frac{8\sqrt{2}π}{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-2ax,其中a∈R,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)在区间[0,1]上的最小值;
(Ⅱ)证明:当x>0时,x2<ex
(Ⅲ)证明:对任意给定的正数b,总存在x0,使得当x∈(x0,+∞),恒有x2<bex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的模为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知下列命题:
①抛物线x2=4y的准线方程为y=-1;
②命题“若x2+y2=0,则x=y=0”的逆命题;
③已知人体脂肪含量的百分比y与年龄x(岁)之间的线性回归方程为$\widehat{y}$=0.6x-0.5,若某人的年龄每增长一岁,则其脂肪含量的百分比一定增长0.6.
④甲、乙两人下棋,和棋的概率为$\frac{1}{3}$,乙胜的概率为$\frac{1}{2}$,则甲胜的概率为$\frac{1}{2}$.
其中,真命题的序号是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知z=2x+y,其中实数x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z的最大值是最小值的4倍,则a的值是(  )
A.$\frac{2}{11}$B.$\frac{1}{4}$C.4D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)e2x+x(a∈R)
(1)求f(x)在(0,+∞)上的单调区间;
(2)若f(x)<2aex在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.向量$\overrightarrow{a}$=(2k-1,1),$\overrightarrow{b}$=(k,k-1),则“k=$\sqrt{2}$”是“$\overrightarrow{a}$⊥$\overrightarrow{b}$”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步练习册答案