精英家教网 > 高中数学 > 题目详情
1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,4),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的模为2$\sqrt{2}$.

分析 首先求出两个向量差的坐标,然后利用模的公式解答.

解答 解:由已知得到$\overrightarrow{a}$-$\overrightarrow{b}$=(-2,-2),
所以|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(-2)^{2}+(-2)^{2}}=2\sqrt{2}$;
故答案为:2$\sqrt{2}$.

点评 本题考查了向量的减法的坐标运算以及由坐标求向量的模;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知正数组成的等比数列{an},若a1•a20=100,那么a3+a18的最小值为(  )
A.20B.25C.50D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=sin2,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,则(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在正三棱柱ABC-A1B1C1中,点D是BC的中点.
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.
(1)求证:平面CBE⊥平面CDE;
(2)求直线EF与平面CBE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于下列命题:
①若一组数据中的每一个数据都加上同一个数后,方差恒不变;
②满足方程f'(x)=0的x值为函数f(x)的极值点;
③命题“p且q为真”是命题“p或q为真”的必要不充分条件;
④若函数f(x)=logax的反函数的图象过点(-1,b),则a+2b的最小值为2$\sqrt{2}$;
⑤函数y=x+$\frac{1}{x}$的极值情况是有极大值2,极小值-2,
其中正确的命题的序号是①④(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的焦点与双曲线$\frac{x^2}{6}-{y^2}$=1的焦点重合,且与x轴,y轴的正半轴分别交于A,B两点,若|AB|=5
(1)求椭圆的方程;
(2)已知F1为椭圆的左焦点,求△ABF1的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )(单位cm3).
A.$\frac{7}{12}π$B.$\frac{7π}{3}$C.$2\sqrt{2}π$D.

查看答案和解析>>

同步练习册答案