精英家教网 > 高中数学 > 题目详情
某港湾的平面示意图如图所示,O,A,B分别是海岸线l1,l2上的三个集镇,A位于O的正南方向6km处,B位于O的北偏东60°方向10km处.
(Ⅰ)求集镇A,B间的距离;
(Ⅱ)随着经济的发展,为缓解集镇O的交通压力,拟在海岸线l1,l2上分别修建码头M,N,开辟水上航线.勘测时发现:以O为圆心,3km为半径的扇形区域为浅水区,不适宜船只航行.请确定码头M,N的位置,使得M,N之间的直线航线最短.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:(Ⅰ)在△ABO中,根据余弦定理,可求AB;
(Ⅱ)依题意得,直线MN必与圆O相切.设切点为C,连接OC,则OC⊥MN,利用面积求出xy,由余弦定理得,c2=x2+y2-2xycos120°=x2+y2+xy≥3xy,即可得出结论.
解答: 解:(Ⅰ)在△ABO中,OA=6,OB=10,∠AOB=120°,…(1分)
根据余弦定理得,AB2=OA2+OB2-2•OA•OB•cos120°…(3分)
=62+102-2×6×10×(-
1
2
)=196

所以AB=14.
故A,B两集镇间的距离为14km.…(5分)
(Ⅱ)依题意得,直线MN必与圆O相切.设切点为C,连接OC,则OC⊥MN.…(6分)
设OM=x,ON=y,MN=c,
在△OMN中,由
1
2
MN•OC=
1
2
OM•ON•sin120°

1
2
×3c=
1
2
xysin120°
,即xy=2
3
c
,…(8分)
由余弦定理得,c2=x2+y2-2xycos120°=x2+y2+xy≥3xy,…(10分)
所以c2≥6
3
c
,解得c≥6
3
,…(11分)
当且仅当x=y=6时,c取得最小值6
3

所以码头M,N与集镇O的距离均为6km时,M,N之间的直线航线最短,最短距离为6
3
km.…(12分)
点评:本小题主要考查解三角形、基本不等式等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A、f(x)=xex
B、f(x)=
ex-e-x
ex+e-x
C、f(x)=
|x|
x
D、f(x)=x3sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-bx(b∈R),则下列结论正确的是(  )
A、?b∈R,f(x)在(0,+∞)上是增函数
B、?b∈R,f(x)在(0,+∞)上是减函数
C、?b∈R,f(x)为奇函数
D、?b∈R,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
3
)cosx.
(1)求f(x)的值域;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=
3
2
,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位从一所学校招收某类特殊人才.对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
逻辑思维能力
运动协调能力
一般 良好 优秀
一般 2 2 1
良好 4 b 1
优秀 1 3 a
例如表中运动协调能力良好且逻辑思维能力一般的学生是4人.由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为
1
5

(Ⅰ)求a,b的值;
(Ⅱ)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(
π
2
,π),sinθ=
4
5
,求cosθ及sin(θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l与抛物线x2=4y相交于A,B两点,且与圆(y-1)2+x2=1相切.
(Ⅰ)求直线l在y轴上截距的取值范围;
(Ⅱ)设F是抛物线的焦点,且
FA
FB
=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),设左顶点为A,上顶点为B,且
OF
FB
=
AB
BF
,如图所示.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若点A与椭圆上的另一点C(非右顶点)关于直线l对称,直线l上一点N(0,y0)满足
NA
NC
=0,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x≥1
y≥0
2x+y≤6
x+y≤a
表示的平面区域是一个四边形,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案