精英家教网 > 高中数学 > 题目详情

(12分)在平面α内有△ABC,在平面α外有点S,斜线SA⊥AC,SB⊥BC,且
斜线SA、SB与平面α所成角相等。
(1)求证:AC=BC
(2)又设点S到α的距离为4cm,AC⊥BC且AB=6cm,求S与AB的距离。

(1)证明:过S作SO⊥面ABC于O



 
S到AB的距离为=5cm.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点。
(1)求证:平面
(2)若平面平面,且,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)在直角梯形A1A2A3D中,A1A2⊥A1D,A1A2⊥A2A3,且B,C分别是边A1A2,A2A3上的一点,沿线段BC,CD,DB分别将△BCA2,△CDA3,△DBA1翻折上去恰好使A1,A2,A3重合于一点A。
(Ⅰ)求证:AB⊥CD;
(Ⅱ)已知A1D=10,A1A2=8,求二面角A-BC-D的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使,说明理由.
(2)问当Q点惟一,且cos<>=时,求点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知四棱锥中,侧棱平面,底面是平行四边形,分别是的中点.
(1)求证:平面
(2)当平面与底面所成二面角为时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈〉的值为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是(  )

A.(,-1,-1) B.(6,-2,-2)
C.(4,2,2) D.(-1,1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

的距离除以到的距离的值为的点的坐标满足(    )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案