精英家教网 > 高中数学 > 题目详情
下列叙述中正确的是(  )
A、若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”
B、若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”
C、命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D、l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β
考点:命题的真假判断与应用,全称命题
专题:简易逻辑
分析:本题先用不等式的知识对选项A、B中命题的条件进行等价分析,得出它们的充要条件,再判断相应命题的真假;对选项以中的命题否定加以研究,判断其真假,在考虑全称量词的同时,要否定命题的结论;对选项D利用立体几何的位置关系,得出命题的真假,可知本题的正确答案.
解答: 解:A、若a,b,c∈R,当“ax2+bx+c≥0”对于任意的x恒成立时,则有:
①当a=0时,要使ax2+bx+c≥0恒成立,需要b=0,c≥0,此时b2-4ac=0,符合b2-4ac≤0;
②当a≠0时,要使ax2+bx+c≥0恒成立,必须a>0且b2-4ac≤0.
∴若a,b,c∈R,“ax2+bx+c≥0”是“b2-4ac≤0”充分不必要条件,“b2-4ac≤0”是“ax2+bx+c≥0”的必要条件,但不是充分条件,即必要不充分条件.故A错误;
B、当ab2>cb2时,b2≠0,且a>c,
∴“ab2>cb2”是“a>c”的充分条件.
反之,当a>c时,若b=0,则ab2=cb2,不等式ab2>cb2不成立.
∴“a>c”是“ab2>cb2”的必要不充分条件.故B错误;
C、结论要否定,注意考虑到全称量词“任意”,
命题“对任意x∈R,有x2≥0”的否定应该是“存在x∈R,有x2<0”.故C错误;
D、命题“l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β.”是两个平面平行的一个判定定理.故D正确.
故答案为:D.
点评:本题考查了命题、充要条件的知识,考查到了不等式、立体几何知识,有一定容量,总体难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若?x∈R,f(x)>f(x-1),则正实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
是空间中两个相互垂直的单位向量,且|
c
|=3,
c
a
=1,
c
b
=2,则对于任意实数t1,t2,|
c
-t1
a
-t2
b
|的最小值是(  )
A、
2
B、
3
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,
π
2
),β∈(0,
π
2
),且tanα=
1+sinβ
cosβ
,则(  )
A、3α-β=
π
2
B、3α+β=
π
2
C、2α-β=
π
2
D、2α+β=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x+y≥1
x-2y≤4
的解集记为D,有下列四个命题:
p1:?(x,y)∈D,x+2y≥-2          p2:?(x,y)∈D,x+2y≥2
p3:?(x,y)∈D,x+2y≤3           p4:?(x,y)∈D,x+2y≤-1
其中真命题是(  )
A、p2,p3
B、p1,p4
C、p1,p2
D、p1,p3

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为(  )
A、①和②B、③和①
C、④和③D、④和②

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若
FP
=4
FQ
,则|QF|=(  )
A、
7
2
B、3
C、
5
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意复数ω1,ω2,定义ω121
.
ω 
2,其中
.
ω
2是ω2的共轭复数,对任意复数z1,z2,z3有如下命题:
①(z1+z2)*z3=(z1*z3)+(z2*z3
②z1*(z2+z3)=(z1*z2)+(z1*z3
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
则真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xe-x
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)当0<x<1时f(x)>f(
k
x
),求实数k的取值范围.

查看答案和解析>>

同步练习册答案