精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+ax2
+bx+c在x=1及x=3时取到极值.
(1)求实数a,b;
(2)若f(x)≥0在[0,4]上恒成立,求实数c的取值范围;
(3)若g(x)=f(x)-cx2在[0,4]上是增函数,求实数c的取值范围.
(1)由题意函数f(x)=
1
3
x3+ax2
+bx+c在x=1及x=3时取到极值,可得x=1及x=3是f′(x)=0的两根
由于f′(x)=x2+2ax+b,故有
1+3=-2a
1×3=b
解得a=-2,b=3
(2)由(1)f(x)=
1
3
x3-2x2
+3x+c,f′(x)=x2-4x+3
令导数大于0解得x>3或x<1,由导数小于0解得1<x<3,可得函数在[0,1]与[3,4]上是增函数,在[1,3]上是减函数,
故函数在[0,4]上的最小值可能为f(0)=c或,f(3)=c,
又f(x)≥0在[0,4]上恒成立,可得c≥0
(3)由题意g(x)=f(x)-cx2=
1
3
x3-(2+c)x2
+3x+c,g′(x)=x2-(4+2c)x+3
又g(x)=f(x)-cx2在[0,4]上是增函数,故g′(x)=x2-(4+2c)x+3≥0在[0,4]上恒成立,
当x=0时,c∈R
当x>0时,可变为4+2c≤x+
3
x
在[0,4]上恒成立,
由于x+
3
x
≥2
3
,等号当且仅当x=
3
x
,即x=
3
成立,
故有4+2c≤2
3
,解得c≤
3
-2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案