精英家教网 > 高中数学 > 题目详情
已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.
(Ⅰ);(Ⅱ);(Ⅲ).

试题分析:(Ⅰ)先求出在点处切线方程为,再求出在点处切线方程为,比较两方程的系数即可得;(Ⅱ)根据题意可转化成上有解,令,只需,分类讨论可求得实数m的取值范围是
(Ⅲ)令,再证函数在区间上单调递增,当时,恒成立,即可得对任意,有,再证即可得证.
试题解析:(Ⅰ)∵,∴,则在点处切线的斜率,切点,则在点处切线方程为
,∴,则在点处切线的斜率,切点,则在点处切线方程为
解得. 4分
(Ⅱ)由,故上有解,
,只需.  6分
①当时,,所以; 7分
②当时,∵
,∴,∴
,即函数在区间上单调递减,
所以,此时
综合①②得实数m的取值范围是.    9分
(Ⅲ)令
,则上恒成立,
∴当时,成立,∴上恒成立,
故函数在区间上单调递增,∴当时,恒成立,
故对于任意,有.    12分
又∵

,从而.… 14分   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数,e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且函数在点处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设点,当时,直线的斜率恒小于,试求实数的取值范围;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为R的奇函数f(x)的导函数为,当时,,若,则下列关于a,b,c的大小关系正确的是(     )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在其定义域内的一个子区间内有最小值,可求得实数的取值范围是,则    

查看答案和解析>>

同步练习册答案