精英家教网 > 高中数学 > 题目详情
已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.
(1)
(2)当时,F(x)的单调减区间是 单调增区间是
时,F(x)没有单调减区间,单调增区间是.

试题分析:(1)因为函数有公共的切线,所以切线的斜率相同,又因为它们都过,所以可以列出方程,求出;(2)先求导数,求出函数的定义域,通过讨论的正负,求导求单调区间.
试题解析:(1)∵过点
,                                        (2分)
,∴切线的斜率.
 (1)
又∵的图像过点 (2)
联立(1)(2)解得:                                (4分)
;切线方程为,即
;切线为:      (6分)
(2)∵
                            (9分)
①当时,, ∵,∴
,∴当时, ;
时,.
的单调减区间是 单调增区间是;       (11分)
②当时,显然没有单调减区间,单调增区间是.    (13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为函数的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(2)若函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数满足,则不等式的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

规定其中为正整数,且=1,这是排列数(是正整数,)的一种推广.
(Ⅰ) 求的值;
(Ⅱ)排列数的两个性质:①,②(其中m,n是正整数).是否都能推广到(是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知函数.
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线的斜率为负数时,求在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)若时,关于的方程有唯一解,求的值;
(3)当时,证明: 对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求的单调区间;
(2)若函数上无零点,求的最小值。

查看答案和解析>>

同步练习册答案