精英家教网 > 高中数学 > 题目详情
己知函数.
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线的斜率为负数时,求在x轴上截距的取值范围.
(I) 0    (II)
(Ⅰ)由题意知,的定义域为R,因为,所以令得:,解得;令,解得,所以当时,0;
时,
(Ⅱ)由题意知,,即,不难解出。
本题第(Ⅰ)问,要求函数的极值,先求函数的定义域、导数、判断导数的正负,可以得出结果;第(Ⅱ)问,先由导数小于0,解得的取值范围,然后结合直线的截距式方程写出直线,即可求出。对第(Ⅰ)问,一部分同学们容易忽视定义域的求解;第(Ⅱ)问,一部分同学找不思路,所以在日常复习中,要加强导数基本题型的训练.
【考点定位】本小题考查利用导数研究函数的单调性、极值、最值、证明不等式等知识,综合性较强,考查函数与方程、分类讨论等数学思想,考查同学们分析问题、解决问题的能力,熟练函数与导数的基础知识以及基本题型是解答好本类题目的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值,求函数上的最小值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为奇函数,且,则当=(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为R的奇函数f(x)的导函数为,当时,,若,则下列关于a,b,c的大小关系正确的是(     )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,(是互不相等的常数),则等于( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(其中).
(Ⅰ) 当时,求函数的单调区间;
(Ⅱ) 当时,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在点处的切线斜率为
(Ⅰ)求实数的值;
(Ⅱ)判断方程根的个数,证明你的结论;
(Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案