精英家教网 > 高中数学 > 题目详情
9.已知f(x)和g(x)分别为R上的奇函数和偶函数,且f(x)+g(x)=lg(2x+1),则f(1)的值为(  )
A.lg2B.lg3C.$lg\sqrt{2}$D.$lg\sqrt{3}$

分析 根据题意,计算出f(1)+g(1)、-f(1)+g(1)的值即可,联立两个等式即可求得f(1)的大小.

解答 解:由题可知:f(1)+g(1)=lg(21+1)=lg3,
f(-1)+g(-1)=lg(2-1+1)=1g3-lg2,
由∵f(x),g(x)分别为定义在R上的奇函数和偶函数,
∴-f(1)+g(1)=lg3-lg2,所以f(1)=lg$\sqrt{2}$,
故选:C.

点评 本题考查函数的奇偶性,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.直线l:kx-y+1=0被圆x2+y2-4y=0截得的最短弦长为(  )
A.$2\sqrt{3}$B.3C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\left\{\begin{array}{l}{lnx,(0<x≤1)}\\{f(x-1)+1,(1<x≤3)}\end{array}\right.$,则f(2+$\frac{1}{e}$)=(  )
A.0B.1C.ln(1+$\frac{1}{e}$)+1D.ln(2+$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}各项为正,a3,a5,-a4成等差数列,Sn为{an}的前n项和,则$\frac{{S}_{6}}{{S}_{3}}$=$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设y=f(t)是某港口水的深度关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0至24时记录的时间t与水深y的关系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.
根据上述数据,函数y=f(t)的解析式为$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tan α=2,则$\frac{4cosα-sinα}{sinα+2cosα}$的值为(  )
A.$\frac{1}{2}$B.-2C.-$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知不等式2xy≤ax2+y2,若对任意x∈[2,4]且y∈[1,6],该不等式恒成立,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设倾斜角为60°的直线l过点(1,0)且与圆C:x2+y2-4x=0相交,则圆C的半径为2;圆心到直线l的距离是$\frac{{\sqrt{3}}}{2}$;直线l被圆截得的弦长为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知几何体O-ABCD的底面ABCD是边长为$\sqrt{3}$的正的方形,且该几何体体积的最大值为$\frac{{3\sqrt{2}}}{2}$,则该几何体外接球的表面积为8π.

查看答案和解析>>

同步练习册答案