精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+2
3
sinxcosx-sin2x.
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,若f(
A
2
)=2,a=
3
,b=1,判断△ABC的形状.
考点:三角函数中的恒等变换应用,正弦定理
专题:三角函数的图像与性质,解三角形
分析:(Ⅰ)利用三角恒等变换可得f(x)=2sin(2x+
π
6
),利用正弦函数的性质可得f(x)的最小正周期和单调递增区间;
(Ⅱ)由f(
A
2
)=2sin(A+
π
6
)=2,可得A=
π
3
,利用正弦定理可求得B=
π
6
C=
π
2
,从而可判断△ABC为直角三角形.
解答: 解:﹙Ⅰ﹚f(x)=cos2x+2
3
sinxcosx-sin2x=cos2x+
3
sin2x=2sin(2x+
π
6
),…(4分)
所以T=π…(5分)
2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z

得f(x)的增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z
.…(7分)
﹙Ⅱ﹚由f(
A
2
)=2,有f(
A
2
)=2sin(A+
π
6
)=2,
所以 sin(A+
π
6
)=1
…(8分)
因为0<A<π,得A+
π
6
=
π
2
,即A=
π
3
…(10分)
由正弦定理
a
sinA
=
b
sinB
sinB=
1
2

又b<a,B<A,
所以B=
π
6
,所以C=
π
2
….…(12分)
∴△ABC为直角三角形.…(13分)
点评:本题考查三角恒等变换的应用及正弦定理,着重考查正弦函数的单调性与三角形形状的判定,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在区间[-2,3]上随机地取一个数a,则函数f(x)=
1
3
x3-ax2+(a+2)x有极值的概率为(  )
A、
1
2
B、
1
3
C、
2
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是平面区域
3x-y-6≤0
x-y+2≥0
x≥0
内的动点,向量
a
=(1,3),则
OP
a
的最小值为(  )
A、-1B、-12
C、-6D、-18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|1≤x≤7,x∈Z},A={1,3,5,7},B={2,4,5},则B∩(∁UA)=(  )
A、{5}
B、{2,4}
C、{2,4,5,6}
D、{1,3,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

若lg2=a,lg3=b,则
lg15
lg12
等于(  )
A、
1+a+b
2a+b
B、
1+a+b
a+2b
C、
1-a+b
2a+b
D、
1-a+b
a+2b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-1)2+x-1,g(x)=lnx.
(Ⅰ)若a=1,求F(x)=g(x)-f(x)在(0,+∞)上的最小值;
(Ⅱ)证明:对任意的正整数n,不等式2+
3
4
+
4
9
+…+
n+1
n
>ln(n+1)都成立;
(Ⅲ)是否存在实数a(a>0),使得方程
2g(x)
x
=f′(x+1)-(4a-1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个扇形的周长为4,求扇形的半径、圆心角各取何值时,此扇形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,河流航线AC段长40公里,工厂B位于码头C正北30公里处,原来工厂B所需原料需由码头A装船沿水路到码头C后,再改陆路运到工厂B,由于水运太长,运费太高,工厂B与航运局协商在AC段上另建一码头D,并由码头D到工厂B修一条新公路,原料改为按由A到D再到B的路线运输.设|AD|=x公里(0≤x≤40),每10吨货物总运费为y元,已知每10吨货物每公里运费,水路为l元,公路为2元.
(1)写出y关于x的函数关系式;
(2)要使运费最省,码头D应建在何处?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kax-a-x(a>0且a≠1)是定义在R上的奇函数.
(1)求k的值;
(2)若f(1)=
3
2
,且函数f(x)在[1,t]上的值域为[
3
2
15
4
],求t的值;
(3)设函数g(x)=f(x)-f(2-x)+3,x1,x2是R上的任意两个实数,且x1+x2=1,若g(mx1)+g(mx2)恒为一个常数,求非零常数m的值.

查看答案和解析>>

同步练习册答案