精英家教网 > 高中数学 > 题目详情
19.已知:$\frac{1}{a_{n+1}}$=$\sqrt{3+\frac{1}{a_{n}^{2}}}$,(n∈N*),且a1=1,an>0.
(1)求证:{$\frac{1}{a_{n}^{2}}$}为等差数列.
(2)求出通项公式.

分析 (1)把已知的数列递推式两边平方,即可证得{$\frac{1}{a_{n}^{2}}$}为等差数列;
(2)由(1)中的等差数列求出通项公式,进一步可得数列{an}的通项公式.

解答 (1)证明:由$\frac{1}{a_{n+1}}$=$\sqrt{3+\frac{1}{a_{n}^{2}}}$,得$\frac{1}{{{a}_{n+1}}^{2}}=3+\frac{1}{{{a}_{n}}^{2}}$,
即$\frac{1}{{{a}_{n+1}}^{2}}-\frac{1}{{{a}_{n}}^{2}}=3$,
又a1=1,∴$\frac{1}{{{a}_{1}}^{2}}=1$,
则数列{$\frac{1}{a_{n}^{2}}$}为以1为首项,以3为公差的等差数列;
(2)解:∵数列{$\frac{1}{a_{n}^{2}}$}为以1为首项,以3为公差的等差数列,
∴$\frac{1}{{{a}_{n}}^{2}}=1+3(n-1)=3n-2$,
则${{a}_{n}}^{2}=\frac{1}{3n-2}$,又an>0,
∴${a}_{n}=\sqrt{\frac{1}{3n-2}}$.

点评 本题考查了数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=(x-2)ex的单调递增区间是(  )
A.(-∞,1)B.( 0,2 )C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆C:x2+y2-2x-2y+1=0与直线x-y=0交于点A,B两点,点P是圆C上异于点A,B外的任意一点,则△PAB的面积的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)解不等式:|2x-1|-|x|<1;
(2)设a2-2ab+5b2=4对?a,b∈R成立,求a+b的最大值及相应的a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.编写一个程序,输出1~100之间所有被7除余2的数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.研究表明,成年人的身高和体重具有线性相关性,小明随机调查了五名成年人甲、乙、丙、丁、戊的身高和体重,得到的结果如下表所示,根据表格中的数据回答下列问题:
编号
身高x(cm)166170172174178
体重y(kg)5560656570
(1)从这五名成年人中任选两名做问卷调查,求选出的两名成年人的身高均超过170cm的概率;
(2)求体重y对身高x的线性回归方程y=bx+a,并据此预测身高为180cm的成年人的体重大约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=$\frac{1}{2}$AA1,D是棱AA1上的动点.
(1)证明:DC1⊥BC;
(2)若平面BDC1分该棱柱为体积相等的两个部分,试确定点D的位置,并求二面角A1-BD-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=|x-2|+2|x+1|.
(1)求函数y=f(x)的最小值;
(2)已知x1,x2∈R,求证:3f($\frac{{x}_{1}+2{x}_{2}}{3}$)≤f(x1)+2f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{e}^{x}}{x-ae}$在(2e+1,f(2e+1))处的切线平行于x轴,其中e是自然对数的底数.
(1)求函数f(x)的单调区间和极值;
(2)求证:f(2e+1)•f(2e+2)…f(2e+n)>e2ne•(n+1),其中n是正整数.

查看答案和解析>>

同步练习册答案