精英家教网 > 高中数学 > 题目详情
已知点A(-1,0),B(1,-1),抛物线C:y2=4x,O为坐标原点,过点A的动直线l交抛物线C于M,P,直线MB交抛物线C于另一点Q.
(I)若向量的夹角为,求△POM的面积;
(Ⅱ)证明直线PQ恒过一个定点.
【答案】分析:(I)设点p,M,A三点共线进而可知AM和PM的斜率相等求得y1y2=4进而根据向量积的运算和两向量的夹角,求得的值,进而利用三角形面积公式求得三角形POM的面积.
(II)设出Q的坐标,根据M,B,Q共线,利用BQ和QM的斜率相等利用点的坐标求得y1y3+y1+y3+4=0.,把y1y2=4代入求得y2和y3的关系式,表示出PQ的斜率,进而可表示出直线PQ的方程,进而利用4(y2+y3)+y2y3+4=0求得(y+4)(y2+y3)=4(x-1),进而可推断出直线PQ过定点.
解答:解:(I)设点p,M,A三点共线,∴kAM=kPM
,即,∴y1y2=4,

∵向量的夹角为45°,∴

(II)设点,y3),
∵M,B,Q三点共线,∴kBQ=kQM
,即
∴(y3+1)(y1+y3)=y32-4,即y1y3+y1+y3+4=0.
∵y1y2=4,即,∴
即4(y2+y3)+y2y3+4=0.(*)∵
∴直线PQ的方程是
即(y-y2)(y2+y3)=4x-y22,即y(y2+y3)-y2y3=4x.
由(*)式,-y2y3=4(y2+y3)+4,代入上式,得(y+4)(y2+y3)=4(x-1).
由此可知直线PQ过定点E(1,-4).
点评:本题主要考查了抛物线的应用,平面解析几何的基础知识.考查了学生分析推理和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案