精英家教网 > 高中数学 > 题目详情
9.设a,b,c 均为正数,且a+b+c=1,
证明:(1)ab+bc+ca≤$\frac{1}{3}$;
(2)$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥1.

分析 (1)a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,由累加法,再由三个数的完全平方公式,即可得证;
(2)$\frac{{a}^{2}}{b}$+b≥2a,$\frac{{b}^{2}}{c}$+c≥2b,$\frac{{c}^{2}}{a}$+a≥2c,运用累加法和条件a+b+c=1,即可得证.

解答 证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)
由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,
即有3(ab+bc+ca)≤1,则ab+bc+ca≤$\frac{1}{3}$;
(2)$\frac{{a}^{2}}{b}$+b≥2a,$\frac{{b}^{2}}{c}$+c≥2b,$\frac{{c}^{2}}{a}$+a≥2c,
故$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$+(a+b+c)≥2(a+b+c),
即有$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥a+b+c.(当且仅当a=b=c取得等号).
故$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥1.

点评 本题考查不等式的证明,注意运用基本不等式和累加法证明,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.圆心角不变,圆的半径伸长为原来的2倍,则(  )
A.弧长为原来的2倍B.弧长为原来的4倍
C.面积为原来的2倍D.面积是原来的2π倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果命题P(n)对于n=1成立,同时,如果n=k成立,那么对于n=k+2也成立.这样,下述结论中正确的是(  )
A.P(n)对于所有的自然数n成立B.P(n)对于所有的正奇数n成立
C.P(n)对于所有的正偶数n成立D.P(n)对于所有大于3的自然数n成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤2-x\\ x-y≤2\\ 2x-y+2≥0\end{array}\right.$,则z=x-2y的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数$f(x)=x-\frac{1}{x}$,对?x∈[1,+∞),使不等式f(mx)+mf(x)<0恒成立的实数m称为函数f(x)的“伴随值”,则实数m的取值范围是m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,a,b,c分别为A,B,C所对的边,且(a+c)(a-c)=b(b+c),则角A=(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知六棱柱 A BCD EF-A1 B1C1D1 E1F1的底面是正六边形,侧棱与底面垂直,若该六棱柱的侧面积为48,底面积为$12\sqrt{3}$,则该六棱柱外接球的表面积等于32π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个数列中,是递增数列的是(  )
A.$\left\{{\frac{n+1}{n}}\right\}$B.$\left\{{\frac{{{{({-1})}^n}}}{n}}\right\}$C.$\left\{{cos\frac{π}{n}}\right\}$D.$\left\{{sin\frac{π}{n}}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{\sqrt{kx^2-4kx+k+8}}$的定义域为R,则实数k的取值集合{k|0≤k<$\frac{8}{3}$}.

查看答案和解析>>

同步练习册答案