精英家教网 > 高中数学 > 题目详情
6.三角形ABC中,AB=2$\sqrt{3}$,BC=2,∠ACB=60°,则∠BAC=$\frac{π}{6}$.

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{2}{sinA}$=$\frac{2\sqrt{3}}{sin6{0}^{°}}$,化为:sinA=$\frac{1}{2}$.
∴a<c,
∴A为锐角,
∴A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,椭圆x2+2y2=1的右焦点为F,直线l不经过焦点,与椭圆相交于点A,B,与y轴的交点为C,则△BCF与△ACF的面积之比是(  )
A.|$\frac{|BF|-1}{|AF|-1}$|B.|$\frac{|BF{|}^{2}-1}{|AF{|}^{2}-1}$|C.$\frac{|BF|+1}{|AF|+1}$D.$\frac{|BF{|}^{2}+1}{|AF{|}^{2}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图算法流程,记输出的y=f(x),则f(f($\frac{1}{e}}$))=(  )
A.-1B.1C.$\frac{1}{e}$D.$\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合 A={x|y=ln(1-x)},B={y|y=e1-x},则 A∩B=(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln$\frac{x}{a}$,曲线y=f(x)在(1,f(1))处的切线方程为x-y-1=0.
(1)求实数a的值;
(2)设h(x)=f(x)-ex(e为自然对数的底数),h'(x)表示h(x)的导函数,求证:对于h(x)的图象上不同两点 A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直线AB的斜率等于h'(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若x>1,则x+$\frac{2}{x-1}$的最小值为(  )
A.1B.2$\sqrt{2}$C.2$\sqrt{2}$-1D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.cos42°cos78°-sin42°sn78°=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{a}{{e}^{x}}$-x+1,a∈R.
(1)当a=1时,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)若对任意x∈(0,+∞),f(x)<0恒成立,求a的取值范围;
(3)当x∈(0,+∞)时,求证:$\frac{2}{{e}^{x}}$-2<$\frac{1}{2}$x2-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=a|x|与y=x+a的图象恰有两个公共点,则实数a的取值范围为(  )
A.(1,+∞)B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步练习册答案