精英家教网 > 高中数学 > 题目详情
16.把正整数排列成如图甲所示三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示三角形数阵,设aij为图乙三角形数阵中第i行第j个数,若amn=2015,则实数对(m,n)为(45,40).

分析 观察图乙找出每行数字的规律,即可使用数列知识解出.

解答 解:观察图乙可发现以下规律:
(1)第一行有1个数字,第二行有2个数字,第三行有3个数字,…故可归纳得出第i行有i个数字;
(2)每一行的数字从左到右都是等差为2的等差数列;
(3)每一行的第一个数字都比上一行的最后一个数字大1;
(4)每一行的最后一个数字都是该行数的平方.
∵442=1936<2015,452=2025>2015,∴2015是第45行的数字,
设第45行第n个数字为an,则a1=1937,d=2,∴an=1937+2(n-1)=2n+1935.
令an=2n+1935=2015,解得n=40.
∴2015是第45行第40个数字,
故答案为(45,40).

点评 本题考查了归纳推理,寻找图中数字的规律是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点A(5,0),抛物线C:y2=4x的焦点为F,点P在抛物线C上,若点F恰好在PA的垂直平分线上,则PA的长度为(  )
A.2B.$2\sqrt{2}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(t为参数)(p>0),直线l经过曲线C外一点A(-2,-4)且倾斜角为$\frac{π}{4}$.
(1)求曲线C的普通方程和直线l的参数方程;
(2)设直线l与曲线C分别交于M1,M2,若|AM1|,|M1M2|,|AM2|成等比数列,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲、乙两位学生参加某项竞赛培训,在培训期间,他们参加的5项预赛成绩的茎叶图记录如下:
(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(Ⅱ)现要从中选派一人参加该项竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为${S_n},{a_1}=1,{S_n}=n{a_n}-3n({n-1}),({n∈{N^*}})$.
(I)求数列{an}的通项公式an
(Ⅱ)是否存在正整数n,使得$\frac{S_1}{1}+\frac{S_2}{2}+\frac{S_3}{3}+…+\frac{S_n}{n}-\frac{3}{2}{({n-1})^2}=2016$?若存在,求出n值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点,Q为BC边上的一点.
(I)若PQ∥面A1ABB1,求出PQ的长;
(Ⅱ)求证:AB1⊥面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,a2•a6=3a4,a1=1.数列{bn}是等差数列,b1=a1,b7=a4,则b4=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.
(I)求p的值;
(II)若经过点D(-2,-1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.双曲线的参数方程$\left\{\begin{array}{l}{x=\frac{a}{cosφ}}\\{y=btanφ}\end{array}\right.$中,参数的几何意义是什么?

查看答案和解析>>

同步练习册答案