精英家教网 > 高中数学 > 题目详情
4.已知函数y=f(x)的定义R在上的奇函数,当x<0时f(x)=x+1,那么不等式f(x)<$\frac{1}{2}$的解集是(  )
A.$[{0,\frac{3}{2}})$B.$({-∞,-\frac{1}{2}})∪[{0,\frac{3}{2}})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{1}{2}})∪({0,\frac{3}{2}})$

分析 可设x>0,从而有-x<0,根据f(x)为奇函数及x<0时f(x)=x+1便可得出x>0时,f(x)=x-1,这样便可得出f(x)在(-∞,0),[0,+∞)上为增函数,并且$f(-\frac{1}{2})=f(\frac{3}{2})=\frac{1}{2}$,讨论x:x<0时,原不等式可变成$f(x)<f(-\frac{1}{2})$,从而有$x<-\frac{1}{2}$,同理可以求出x≥0时,原不等式的解,求并集即可得出原不等式的解集.

解答 解:设x>0,-x<0,则:f(-x)=-x+1=-f(x);
∴f(x)=x-1;
∴$f(x)=\left\{\begin{array}{l}{x+1}&{x<0}\\{x-1}&{x≥0}\end{array}\right.$;
∴$f(-\frac{1}{2})=f(\frac{3}{2})=\frac{1}{2}$,且f(x)在(-∞,0),[0,+∞)上为增函数;
∴①若x<0,由$f(x)<\frac{1}{2}$得,f(x)$<f(-\frac{1}{2})$;
∴$x<-\frac{1}{2}$;
②若x≥0,由f(x)$<\frac{1}{2}$得,$f(x)<f(\frac{3}{2})$;
∴$0≤x<\frac{3}{2}$;
综上得,原不等式的解集为$(-∞,-\frac{1}{2})∪[0,\frac{3}{2})$.
故选:B.

点评 考查奇函数的定义,对于奇函数,已知一区间上的解析式,求对称区间上的解析式的方法和过程,一次函数的单调性,分段函数单调性的判断,以及根据函数单调性解不等式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn且满足Sn+an=2n.
(1)写出a1,a2,a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x2+bx,g(x)=|x-1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)-f(x2)<g(x1)-g(x2),则实数b的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则(  )
A.方案一中扇形的周长更长B.方案二中扇形的周长更长
C.方案一中扇形的面积更大D.方案二中扇形的面积更大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若幂函数y=f(x)的图象过点$({\frac{1}{9},\frac{1}{3}})$,则f(16)的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知AB、CD为过抛物线y2=2px(p>0)的焦点F的弦,AC交BD于点N,AD交BC于点M.求证:△MNF的外接圆过一个不同于F的定点G,并求点G的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在下列各图中,两个变量具有较强正相关关系的散点图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点M,N分别是正方体ABCD-A1B1C1D1的棱BB1和B1C1的中点,则异面直线CM与DN所成的角的余弦值为(  )
A.$\frac{{4\sqrt{5}}}{15}$B.$\frac{{\sqrt{5}}}{15}$C.$\frac{{\sqrt{3}}}{15}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}各项均为正数,其中a1=2,an+1是an与2an+an+1的等比中项.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{({a}_{n}-1)({a}_{n+1}-1)}$.Tn为{bn}的前n项和,求使${T_n}>\frac{2015}{2016}$成立时n的最小值.

查看答案和解析>>

同步练习册答案