精英家教网 > 高中数学 > 题目详情
2.在数列{an}中,a1=2,an+1=1-$\frac{1}{{a}_{n}}$,则a2010=(  )
A.1B.-1C.$\frac{1}{2}$D.2

分析 由已知条件分别求出数列的前4项,得到数列{an}是周期为3的周期数列,由此能求出a2010

解答 解:∵在数列{an}中,a1=2,an+1=1-$\frac{1}{{a}_{n}}$,
∴${a}_{2}=1-\frac{1}{2}$=$\frac{1}{2}$,
${a}_{3}=1-\frac{1}{\frac{1}{2}}$=-1,
${a}_{4}=1-\frac{1}{-1}$=2,
∴数列{an}是周期为3的周期数列,
∵2010=670×3,
∴a2010=a3=-1.
故选:B.

点评 本题考查数列的前2010项的求法,是基础题,解题的关键是推导出数列{an}是周期为3的周期数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C对应的边分别为a,b,c,已知O是平面ABC上的一定点,平面ABC上的点P满足$\overrightarrow{OP}$=$\frac{a}{a+b+c}$$\overrightarrow{OA}$+$\frac{b}{a+b+c}$$\overrightarrow{OB}$+$\frac{c}{a+b+c}$$\overrightarrow{OC}$,则点P的轨迹一定是△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义某种运算?,a?b的运算原理如图 所示.设f(x)=1?x.f(x)在区间[-2,2]上的最大值为2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:cos(2arccos$\frac{12}{13}$)=$\frac{119}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+ax在[1,+∞)上单调递增函数,则实数a的最小值是(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设集合A={a,b,c},B={0,1},则从A到B可以构成的映射有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}的首项a1=1,且an=3an-1+2(n≥2),则a5为(  )
A.13B.53C.81D.161

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2+2x+p=0},B={x|x≤0},A∩B≠∅,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数既是奇函数,又在区间[-1,1]上是单调递减的是(  )
A.f(x)=x3B.f(x)=-|x+1|C.f(x)=ln$\frac{2-x}{2+x}$D.f(x)=$\frac{{a}^{x}+{a}^{-x}}{2}$

查看答案和解析>>

同步练习册答案