精英家教网 > 高中数学 > 题目详情
5.复数(1+i)z=1-i(其中i为虚数单位),则z2等于(  )
A.1B.-1C.iD.-i

分析 利用复数的运算法则即可得出.

解答 解:∵(1+i)z=1-i,
∴z=$\frac{1-i}{1+i}$=$\frac{(1-i)(1-i)}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,
∴z2=-1,
故选:B.

点评 本题主要考查了复数的乘法运算,属基础题,较简单.解题的关键是掌握住复数的乘法类似于多项式的展开但要借助于i2=-1进行化简.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在Rt△ABC中,∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,则 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)对任意x∈[a,+∞),都有f(x)≤x-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线x+2y-1=0与直线2x+my+4=0平行,则m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在边长为1的正方形ABCD中,$2\overrightarrow{AE}=\overrightarrow{EB}$,BC的中点为F,$\overrightarrow{EF}=2\overrightarrow{FG}$,则$\overrightarrow{EG}•\overrightarrow{BD}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xoy中,直线l:y=2x-4,圆C的半径为1,圆心在直线l上,若圆C上存在点M,且M在圆D:x2+(y+1)2=4上,则圆心C的横坐标a的取值范围是(  )
A.$[{\frac{3}{5},2}]$B.$[{0,\frac{12}{5}}]$C.$[{2-\frac{2}{5}\sqrt{5},2+\frac{2}{5}\sqrt{5}}]$D.$[{0,2-\frac{2}{5}\sqrt{5}}]∪[{2+\frac{2}{5}\sqrt{5},4}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(1,m-$\frac{3}{2}$),$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=(  )
A.3B.0C.$\frac{13}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=aln(x+2)-x2在(0,1)内任取两个实数p,q,且p>q,若不等式$\frac{f(p+1)-f(q+1)}{p-q}>2$恒成立,则实数a的取值范围是(  )
A.(-∞,24]B.(-∞,12]C.[12,+∞)D.[24,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数$y=3sinx+2\sqrt{2+2cos2x}$的最大值.

查看答案和解析>>

同步练习册答案