精英家教网 > 高中数学 > 题目详情
15.在Rt△ABC中,∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,则 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=0.

分析 由已知画出图形,把$\overrightarrow{CD}、\overrightarrow{CE}$转化为含有$\overrightarrow{CB}、\overrightarrow{CA}$的式子求解.

解答 解:如图,

∵∠ACB=90°,$\overrightarrow{BD}$=$\overrightarrow{DA}$,$\overrightarrow{AB}$=2$\overrightarrow{BE}$,
则 $\overrightarrow{CD}•\overrightarrow{CA}+\overrightarrow{CE}•\overrightarrow{CA}$=$(\overrightarrow{CD}+\overrightarrow{CE})•\overrightarrow{CA}$
=$\frac{1}{2}\overrightarrow{CB}•\overrightarrow{CA}=0$.
故答案为:0.

点评 本题考查平面向量的数量积运算,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{an}为“斐波那契”数列,Sn为数列{an}的前n项和,则
(Ⅰ)S7=33;      
(Ⅱ)若a2017=m,则S2015=m-1.(用m表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,∠AED=90°,且平面ABCD⊥平面ADEF,AF=FE=AB=$\frac{1}{2}$AD=2,点G为AC的中点.
(Ⅰ)求证:平面BAE⊥平面DCE;
(Ⅱ)求三棱锥B-AEG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直角三角形△ABC中,若∠ACB=90°,AC=3,$\overrightarrow{BD}$=2$\overrightarrow{DA}$,$\overrightarrow{AB}$=3$\overrightarrow{BE}$,则 $\overrightarrow{CD}$•$\overrightarrow{CA}$+$\overrightarrow{CE}$•$\overrightarrow{CA}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某三棱锥的三视图如图所示,则该三棱锥外接球的表面积是(  )
A.36πB.24πC.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},(x≤1)}\\{lo{g}_{\frac{1}{3}}x,(x>1)}\end{array}\right.$,则函数 y=f (1-x) 的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:若x>y,则${(\frac{1}{2})^x}<{(\frac{1}{2})^y}$;命题q:若m>1,则函数 y=x2+mx+1有两个零点.在下列命题中:(1)p∧q;(2)p∨q;(3)p∧(¬q);(4)(¬p)∨q,为真命题的是(  )
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的公差不等于零,前n项和为Sn,a5=9且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{{{a_n}-1}}{{{2^{a_n}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数(1+i)z=1-i(其中i为虚数单位),则z2等于(  )
A.1B.-1C.iD.-i

查看答案和解析>>

同步练习册答案